{"title":"Traffic sign recognition using convolutional neural networks","authors":"M. Akbar","doi":"10.14710/JTSISKOM.2021.13959","DOIUrl":null,"url":null,"abstract":"Traffic sign recognition (TSR) can be used to recognize traffic signs by utilizing image processing. This paper presents traffic sign recognition in Indonesia using convolutional neural networks (CNN). The overall image dataset used is 2050 images of traffic signs, consisting of 10 kinds of signs. The CNN layer used in this study consists of one convolution layer, one pooling layer using maxpool operation, and one fully connected layer. The training algorithm used is stochastic gradient descent (SGD). At the training stage, using 1750 training images, 48 filters, and a learning rate of 0.005, the recognition results in 0.005 of loss and 100 % of accuracy. At the testing stage using 300 test images, the system recognizes the signs with 0.107 of loss and 97.33 % of accuracy.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.2021.13959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Traffic sign recognition (TSR) can be used to recognize traffic signs by utilizing image processing. This paper presents traffic sign recognition in Indonesia using convolutional neural networks (CNN). The overall image dataset used is 2050 images of traffic signs, consisting of 10 kinds of signs. The CNN layer used in this study consists of one convolution layer, one pooling layer using maxpool operation, and one fully connected layer. The training algorithm used is stochastic gradient descent (SGD). At the training stage, using 1750 training images, 48 filters, and a learning rate of 0.005, the recognition results in 0.005 of loss and 100 % of accuracy. At the testing stage using 300 test images, the system recognizes the signs with 0.107 of loss and 97.33 % of accuracy.