{"title":"Minimization and Eulerian Formulation of Differential Geormetry Based Nonpolar Multiscale Solvation Models","authors":"Zhan Chen","doi":"10.1515/mlbmb-2016-0005","DOIUrl":null,"url":null,"abstract":"Abstract In this work, the existence of a global minimizer for the previous Lagrangian formulation of nonpolar solvation model proposed in [1] has been proved. One of the proofs involves a construction of a phase field model that converges to the Lagrangian formulation. Moreover, an Eulerian formulation of nonpolar solvation model is proposed and implemented under a similar parameterization scheme to that in [1]. By doing so, the connection, similarity and difference between the Eulerian formulation and its Lagrangian counterpart can be analyzed. It turns out that both of them have a great potential in solvation prediction for nonpolar molecules, while their decompositions of attractive and repulsive parts are different. That indicates a distinction between phase field models of solvation and our Eulerian formulation.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mlbmb-2016-0005","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mlbmb-2016-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract In this work, the existence of a global minimizer for the previous Lagrangian formulation of nonpolar solvation model proposed in [1] has been proved. One of the proofs involves a construction of a phase field model that converges to the Lagrangian formulation. Moreover, an Eulerian formulation of nonpolar solvation model is proposed and implemented under a similar parameterization scheme to that in [1]. By doing so, the connection, similarity and difference between the Eulerian formulation and its Lagrangian counterpart can be analyzed. It turns out that both of them have a great potential in solvation prediction for nonpolar molecules, while their decompositions of attractive and repulsive parts are different. That indicates a distinction between phase field models of solvation and our Eulerian formulation.