Mesh Generation and Flexible Shape Comparisons for Bio-Molecules

Zhanheng Gao, Reihaneh Rostami, Xiaoli Pang, Zhicheng Fu, Zeyun Yu
{"title":"Mesh Generation and Flexible Shape Comparisons for Bio-Molecules","authors":"Zhanheng Gao, Reihaneh Rostami, Xiaoli Pang, Zhicheng Fu, Zeyun Yu","doi":"10.1515/mlbmb-2016-0001","DOIUrl":null,"url":null,"abstract":"Abstract Novel approaches for generating and comparing flexible (non-rigid) molecular surface meshes are developed. The mesh-generating method is fast and memory-efficient. The resulting meshes are smooth and accurate, and possess high mesh quality. An isometric-invariant shape descriptor based on the Laplace- Beltrami operator is then explored for mesh comparing. The new shape descriptor is more powerful in discriminating different surface shapes but rely only on a small set of signature values. The shape descriptor is applied to shape comparison between molecules with deformed structures. The proposed methods are implemented into a program that can be used as a stand-alone software tool or as a plug-in to other existing molecular modeling tools. Particularly, the code is encapsulated into a software toolkit with a user-friendly graphical interface developed by the authors.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mlbmb-2016-0001","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mlbmb-2016-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Novel approaches for generating and comparing flexible (non-rigid) molecular surface meshes are developed. The mesh-generating method is fast and memory-efficient. The resulting meshes are smooth and accurate, and possess high mesh quality. An isometric-invariant shape descriptor based on the Laplace- Beltrami operator is then explored for mesh comparing. The new shape descriptor is more powerful in discriminating different surface shapes but rely only on a small set of signature values. The shape descriptor is applied to shape comparison between molecules with deformed structures. The proposed methods are implemented into a program that can be used as a stand-alone software tool or as a plug-in to other existing molecular modeling tools. Particularly, the code is encapsulated into a software toolkit with a user-friendly graphical interface developed by the authors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物分子的网格生成和柔性形状比较
摘要:提出了柔性(非刚性)分子表面网格生成和比较的新方法。该网格生成方法具有快速、节省内存的特点。所得网格平滑、准确,网格质量高。在此基础上,提出了一种基于拉普拉斯-贝尔特拉米算子的等距不变形状描述子,用于网格比较。新的形状描述符在区分不同的表面形状方面更强大,但仅依赖于一小部分签名值。将形状描述符应用于具有变形结构的分子之间的形状比较。所提出的方法被实现到一个程序中,该程序可以用作独立的软件工具或作为其他现有分子建模工具的插件。特别地,代码被封装到一个由作者开发的具有用户友好图形界面的软件工具包中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
期刊最新文献
Optimal control and bifurcation analysis of SEIHR model for COVID-19 with vaccination strategies and mask efficiency Assessing the impact of information-induced self-protection on Zika transmission: A mathematical modeling approach Optimal control of susceptible mature pest concerning disease-induced pest-natural enemy system with cost-effectiveness On building machine learning models for medical dataset with correlated features A mathematical study of the adrenocorticotropic hormone as a regulator of human gene expression in adrenal glands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1