Design strategies of electrocatalysts for acidic oxygen evolution reaction

IF 22.2 Q1 CHEMISTRY, MULTIDISCIPLINARY EnergyChem Pub Date : 2023-09-01 DOI:10.1016/j.enchem.2023.100104
Shubham Kaushik, Xin Xiao, Qiang Xu
{"title":"Design strategies of electrocatalysts for acidic oxygen evolution reaction","authors":"Shubham Kaushik,&nbsp;Xin Xiao,&nbsp;Qiang Xu","doi":"10.1016/j.enchem.2023.100104","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical water splitting, especially in acidic media, is a promising technology for hydrogen production and sustainable energy conversion. However, it remains a challenge to synthesize suitable acidic oxygen evolution reaction (OER) electrocatalysts that provide high activity and long-term stability according to the industrial standards. Up to date, quite few reviews provide a systematic summarization of the strategies and approaches to improve the electrocatalytic performances of the catalysts in acidic electrolytes. Herein, we analyze the electrochemical behavior of the reported state-of-the-art OER catalysts and provide a comprehensive review of the systematic strategies for preparing high-performance electrocatalysts. First, we introduce some fundamentals of OER mechanism to give readers a deeper understanding of this field. Then, we summarize and discuss various design strategies, including electronic state modulation, structural manipulation, etc. Finally, the challenges, opportunities, and future outlook regarding acidic OER electrocatalysts are delivered. This review will serve as a useful guiding resource for researchers seeking in-depth understanding of the OER mechanism in acidic media as well as learning approaches for synthesizing highly efficient and cost-effective OER electrocatalysts.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"5 5","pages":"Article 100104"},"PeriodicalIF":22.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778023000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Electrochemical water splitting, especially in acidic media, is a promising technology for hydrogen production and sustainable energy conversion. However, it remains a challenge to synthesize suitable acidic oxygen evolution reaction (OER) electrocatalysts that provide high activity and long-term stability according to the industrial standards. Up to date, quite few reviews provide a systematic summarization of the strategies and approaches to improve the electrocatalytic performances of the catalysts in acidic electrolytes. Herein, we analyze the electrochemical behavior of the reported state-of-the-art OER catalysts and provide a comprehensive review of the systematic strategies for preparing high-performance electrocatalysts. First, we introduce some fundamentals of OER mechanism to give readers a deeper understanding of this field. Then, we summarize and discuss various design strategies, including electronic state modulation, structural manipulation, etc. Finally, the challenges, opportunities, and future outlook regarding acidic OER electrocatalysts are delivered. This review will serve as a useful guiding resource for researchers seeking in-depth understanding of the OER mechanism in acidic media as well as learning approaches for synthesizing highly efficient and cost-effective OER electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酸性析氧反应电催化剂的设计策略
电化学水分解是一种很有前途的制氢和可持续能源转换技术,特别是在酸性介质中。然而,如何合成符合工业标准、具有高活性和长期稳定性的酸性析氧反应(OER)电催化剂仍然是一个挑战。目前,国内外对提高催化剂在酸性电解质中的电催化性能的策略和方法进行了较为系统的综述。在此,我们分析了目前报道的最先进的OER催化剂的电化学行为,并对制备高性能电催化剂的系统策略进行了全面的综述。首先,我们将介绍OER机制的一些基本原理,以便读者对该领域有更深入的了解。然后,我们总结和讨论了各种设计策略,包括电子状态调制,结构操纵等。最后,介绍了酸性OER电催化剂的挑战、机遇和未来展望。本文将为研究人员深入了解酸性介质中OER的机理以及合成高效、经济的OER电催化剂提供有益的指导资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EnergyChem
EnergyChem Multiple-
CiteScore
40.80
自引率
2.80%
发文量
23
审稿时长
40 days
期刊介绍: EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage
期刊最新文献
Hierarchically ordered meso-/macroporous MOF-based materials for catalysis and energy applications Hydrothermal treatment of lignocellulosic biomass towards low-carbon development: Production of high-value-added bioproducts Progresses and insights of thermoelectrochemical devices for low-grade heat harvesting: From mechanisms, materials to devices Hole transport materials for scalable p-i-n perovskite solar modules Highly asymmetrically configured single atoms anchored on flame-roasting deposited carbon black as cathode catalysts for ultrahigh power density Zn-air batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1