{"title":"Study on Desulfurization of Crude Benzene with Microcrystalline Adsorbent","authors":"Zichun Guo, Shijie Wang, Hongming Fang, Huining Wei, Hui Li, Jiaqi Yan","doi":"10.3103/S1068364X23700916","DOIUrl":null,"url":null,"abstract":"<p>An increasing number of coking enterprises are challenged by excessive sulfur content in their crude benzene products, which hinders sales and revenue. In this work, microcrystalline adsorbent was used to remove carbon disulfide and thiophene in crude benzene. BET, XRD, XRF and SEM characterization showed that the microcrystalline adsorbent has a large specific surface area, high crystallinity morphology, Si/Al ratio and regeneration stability. By investigating the effects of adsorption time, temperature, adsorbent dosage and regeneration times on the desulfurization performance of microcrystalline adsorbent W1, it was found that the desulfurization effect was mainly affected by time and temperature. When the experimental conditions at 20°C, 7 h, the amount of adsorbent was 4.5 g, the volume of crude benzene was 10 mL, resulting in desulfurization rate of 67% for thiophene, 52% for carbon disulfide, and 62% for total desulfurization, approximately 26% for crude benzene loss rate. The overall desulfurization rate remained stable around 55% after three regenerations, while the rate for rude benzene loss increased to roughly 30%. The results indicate that the microcrystalline adsorbent exhibits significant potential for desulfurization of crude benzene, providing valuable guidance and reference for coking enterprises.</p>","PeriodicalId":519,"journal":{"name":"Coke and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coke and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068364X23700916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An increasing number of coking enterprises are challenged by excessive sulfur content in their crude benzene products, which hinders sales and revenue. In this work, microcrystalline adsorbent was used to remove carbon disulfide and thiophene in crude benzene. BET, XRD, XRF and SEM characterization showed that the microcrystalline adsorbent has a large specific surface area, high crystallinity morphology, Si/Al ratio and regeneration stability. By investigating the effects of adsorption time, temperature, adsorbent dosage and regeneration times on the desulfurization performance of microcrystalline adsorbent W1, it was found that the desulfurization effect was mainly affected by time and temperature. When the experimental conditions at 20°C, 7 h, the amount of adsorbent was 4.5 g, the volume of crude benzene was 10 mL, resulting in desulfurization rate of 67% for thiophene, 52% for carbon disulfide, and 62% for total desulfurization, approximately 26% for crude benzene loss rate. The overall desulfurization rate remained stable around 55% after three regenerations, while the rate for rude benzene loss increased to roughly 30%. The results indicate that the microcrystalline adsorbent exhibits significant potential for desulfurization of crude benzene, providing valuable guidance and reference for coking enterprises.
期刊介绍:
The journal publishes scientific developments and applications in the field of coal beneficiation and preparation for coking, coking processes, design of coking ovens and equipment, by-product recovery, automation of technological processes, ecology and economics. It also presents indispensable information on the scientific events devoted to thermal rectification, use of smokeless coal as an energy source, and manufacture of different liquid and solid chemical products.