Formyl-methionine as a degradation signal at the N-termini of bacterial proteins.

IF 4.1 3区 生物学 Q2 CELL BIOLOGY Microbial Cell Pub Date : 2015-01-01 DOI:10.15698/mic2015.10.231
Konstantin I Piatkov, Tri T M Vu, Cheol-Sang Hwang, Alexander Varshavsky
{"title":"Formyl-methionine as a degradation signal at the N-termini of bacterial proteins.","authors":"Konstantin I Piatkov, Tri T M Vu, Cheol-Sang Hwang, Alexander Varshavsky","doi":"10.15698/mic2015.10.231","DOIUrl":null,"url":null,"abstract":"<p><p>In bacteria, all nascent proteins bear the pretranslationally formed N-terminal formyl-methionine (fMet) residue. The fMet residue is cotranslationally deformylated by a ribosome-associated deformylase. The formylation of N-terminal Met in bacterial proteins is not strictly essential for either translation or cell viability. Moreover, protein synthesis by the cytosolic ribosomes of eukaryotes does not involve the formylation of N-terminal Met. What, then, is the main biological function of this metabolically costly, transient, and not strictly essential modification of N-terminal Met, and why has Met formylation not been eliminated during bacterial evolution? One possibility is that the similarity of the formyl and acetyl groups, their identical locations in N-terminally formylated (Nt-formylated) and Nt-acetylated proteins, and the recently discovered proteolytic function of Nt-acetylation in eukaryotes might also signify a proteolytic role of Nt-formylation in bacteria. We addressed this hypothesis about fMet-based degradation signals, termed fMet/N-degrons, using specific <i>E. coli</i> mutants, pulse-chase degradation assays, and protein reporters whose deformylation was altered, through site-directed mutagenesis, to be either rapid or relatively slow. Our findings strongly suggest that the formylated N-terminal fMet can act as a degradation signal, largely a cotranslational one. One likely function of fMet/N-degrons is the control of protein quality. In bacteria, the rate of polypeptide chain elongation is nearly an order of magnitude higher than in eukaryotes. We suggest that the faster emergence of nascent proteins from bacterial ribosomes is one mechanistic and evolutionary reason for the pretranslational design of bacterial fMet/N-degrons, in contrast to the cotranslational design of analogous Ac/N-degrons in eukaryotes.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"2 1","pages":"376-393"},"PeriodicalIF":4.1000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745127/pdf/","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2015.10.231","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 60

Abstract

In bacteria, all nascent proteins bear the pretranslationally formed N-terminal formyl-methionine (fMet) residue. The fMet residue is cotranslationally deformylated by a ribosome-associated deformylase. The formylation of N-terminal Met in bacterial proteins is not strictly essential for either translation or cell viability. Moreover, protein synthesis by the cytosolic ribosomes of eukaryotes does not involve the formylation of N-terminal Met. What, then, is the main biological function of this metabolically costly, transient, and not strictly essential modification of N-terminal Met, and why has Met formylation not been eliminated during bacterial evolution? One possibility is that the similarity of the formyl and acetyl groups, their identical locations in N-terminally formylated (Nt-formylated) and Nt-acetylated proteins, and the recently discovered proteolytic function of Nt-acetylation in eukaryotes might also signify a proteolytic role of Nt-formylation in bacteria. We addressed this hypothesis about fMet-based degradation signals, termed fMet/N-degrons, using specific E. coli mutants, pulse-chase degradation assays, and protein reporters whose deformylation was altered, through site-directed mutagenesis, to be either rapid or relatively slow. Our findings strongly suggest that the formylated N-terminal fMet can act as a degradation signal, largely a cotranslational one. One likely function of fMet/N-degrons is the control of protein quality. In bacteria, the rate of polypeptide chain elongation is nearly an order of magnitude higher than in eukaryotes. We suggest that the faster emergence of nascent proteins from bacterial ribosomes is one mechanistic and evolutionary reason for the pretranslational design of bacterial fMet/N-degrons, in contrast to the cotranslational design of analogous Ac/N-degrons in eukaryotes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲酰基蛋氨酸作为细菌蛋白质n端降解信号。
在细菌中,所有新生蛋白都带有翻译前形成的n端甲硫氨酸(fMet)残基。fMet残基被核糖体相关的去甲酰基酶共翻译去甲酰基化。细菌蛋白中n端Met的甲酰化对翻译或细胞生存都不是严格必需的。此外,真核生物胞质核糖体的蛋白质合成不涉及n端Met的甲酰化。那么,这种代谢成本高、短暂且非严格必需的n端Met修饰的主要生物学功能是什么?为什么Met甲酰化在细菌进化过程中没有被消除?一种可能性是甲酰基和乙酰基的相似性,它们在n端甲酰化(nt -甲酰化)和nt -乙酰化蛋白质中的相同位置,以及最近发现的nt -乙酰化在真核生物中的蛋白质水解功能也可能表明nt -甲酰化在细菌中的蛋白质水解作用。我们利用特定的大肠杆菌突变体、脉冲追踪降解试验和通过位点定向诱变改变去甲酰化的蛋白质报告蛋白,解决了关于fMet/N-degrons降解信号的假设,这些信号被称为fMet/N-degrons。我们的研究结果强烈表明,甲酰化的n端fMet可以作为降解信号,主要是共翻译信号。fMet/N-degrons的一个可能功能是控制蛋白质质量。在细菌中,多肽链延伸率几乎比真核生物高一个数量级。我们认为,细菌核糖体中新生蛋白的更快出现是细菌fMet/N-degrons的预翻译设计的一个机制和进化原因,而不是真核生物中类似的Ac/N-degrons的共翻译设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Cell
Microbial Cell Multiple-
CiteScore
6.40
自引率
0.00%
发文量
32
审稿时长
12 weeks
期刊最新文献
Microwave-assisted preparation of yeast cells for ultrastructural analysis by electron microscopy. Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms. A complex remodeling of cellular homeostasis distinguishes RSV/SARS-CoV-2 co-infected A549-hACE2 expressing cell lines. RidA proteins contribute to fitness of S. enterica and E. coli by reducing 2AA stress and moderating flux to isoleucine biosynthesis. Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1