Abhinav Sharma , Hendrik Faber , Ajit Khosla , Thomas D. Anthopoulos
{"title":"3D printed electrochemical devices for bio-chemical sensing: A review","authors":"Abhinav Sharma , Hendrik Faber , Ajit Khosla , Thomas D. Anthopoulos","doi":"10.1016/j.mser.2023.100754","DOIUrl":null,"url":null,"abstract":"<div><p><span>Portable, affordable, and miniaturized electrochemical sensors<span> for point-of-care diagnostic devices<span> represent a step towards achieving the United Nations’ Sustainable Development Goal 3: Good Health and Well-Being. Over the last 10 years, rapid advancements in three-dimensional (3D) printing technology (additive manufacturing) have enabled the production of low-cost, miniature 3D printed (3DP) devices for bio-chemical sensing, enabling innovation in healthcare diagnostics for everyone regardless of their economic background or geographical location. Compared to traditional manufacturing processes, 3D printing offers numerous advantages for miniaturized electrochemical point-of-care diagnostic devices, such as rapid prototyping, custom-shaped devices, flexible fabrication designs, low energy consumption, reduced time to market, and reduced waste generation. This article reviews recent developments in 3DP electrochemical sensors, including the printing of composite materials, advanced electrode architectures, activation and functionalization methods, and electrochemical sensing performance (i.e. sensitivity, linear range, limits of detection) towards various analytes, including heavy metals/water pollutants, toxic/explosive substances, neurotransmitters/stimulants, metabolites, DNA, amino acids, proteins, viruses, and food pathogens. Moreover, we discuss the remaining challenges and gaps in current knowledge and solutions to improve the electroanalytic performance of 3DP electrodes for future biomedical applications in wearable and smart-implantable </span></span></span>sensor systems of the future.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"156 ","pages":"Article 100754"},"PeriodicalIF":31.6000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X23000402","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Portable, affordable, and miniaturized electrochemical sensors for point-of-care diagnostic devices represent a step towards achieving the United Nations’ Sustainable Development Goal 3: Good Health and Well-Being. Over the last 10 years, rapid advancements in three-dimensional (3D) printing technology (additive manufacturing) have enabled the production of low-cost, miniature 3D printed (3DP) devices for bio-chemical sensing, enabling innovation in healthcare diagnostics for everyone regardless of their economic background or geographical location. Compared to traditional manufacturing processes, 3D printing offers numerous advantages for miniaturized electrochemical point-of-care diagnostic devices, such as rapid prototyping, custom-shaped devices, flexible fabrication designs, low energy consumption, reduced time to market, and reduced waste generation. This article reviews recent developments in 3DP electrochemical sensors, including the printing of composite materials, advanced electrode architectures, activation and functionalization methods, and electrochemical sensing performance (i.e. sensitivity, linear range, limits of detection) towards various analytes, including heavy metals/water pollutants, toxic/explosive substances, neurotransmitters/stimulants, metabolites, DNA, amino acids, proteins, viruses, and food pathogens. Moreover, we discuss the remaining challenges and gaps in current knowledge and solutions to improve the electroanalytic performance of 3DP electrodes for future biomedical applications in wearable and smart-implantable sensor systems of the future.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.