{"title":"Zn (II) octahedral complex with new ketimine ligand: design, synthesis and single-crystal studies","authors":"Fawad Ahmad, Nasir Abbas, Ayesha Ihsan, Muhammad Saqib Ghafoor, Ghulam Shabir, Aamer Saeed","doi":"10.1007/s11243-023-00547-6","DOIUrl":null,"url":null,"abstract":"<div><p>The present investigation deals with the synthesis and single-crystal X-ray analysis of Zu (II) coordination complex of ketimine ligand which was obtained by reaction of dehydroacetic acid with carbohydrazide (<b>3</b>) and characterized the title compound with elemental analysis, multinuclear (<sup>1</sup>H and <sup>13</sup>C) NMR, UV visible, and FTIR spectral data. It crystallized in orthorhombic crystal system with space group Pbcn and unit cell dimensions: <i>a</i> = 18.7959 (4), <i>b</i> = 11.2890 (2) and <i>c</i> = 13.4480 (3) Å, and <i>α</i> = <i>β</i> = <i>γ</i> = 90°. The suggested geometry obtained after experimental analysis was distorted octahedral due to some angle strain between axial homonuclear N donor atoms around central Zn, and it was very close to the expected geometry. The DNA co-relation analysis was carried out by using fixed concentration of Calf Thymus DNA against the solution of analyte using UV spectroscopy. The ligand and metal complexes were examined for antibacterial and fungal activities against <i>E. coli</i>, <i>M. luteus</i>, <i>E. aerogenes</i>, <i>S. aureus,</i> and <i>C. albicans,</i> and the titled complex was found to be active against all the tested strains.</p></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"48 5","pages":"343 - 351"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-023-00547-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The present investigation deals with the synthesis and single-crystal X-ray analysis of Zu (II) coordination complex of ketimine ligand which was obtained by reaction of dehydroacetic acid with carbohydrazide (3) and characterized the title compound with elemental analysis, multinuclear (1H and 13C) NMR, UV visible, and FTIR spectral data. It crystallized in orthorhombic crystal system with space group Pbcn and unit cell dimensions: a = 18.7959 (4), b = 11.2890 (2) and c = 13.4480 (3) Å, and α = β = γ = 90°. The suggested geometry obtained after experimental analysis was distorted octahedral due to some angle strain between axial homonuclear N donor atoms around central Zn, and it was very close to the expected geometry. The DNA co-relation analysis was carried out by using fixed concentration of Calf Thymus DNA against the solution of analyte using UV spectroscopy. The ligand and metal complexes were examined for antibacterial and fungal activities against E. coli, M. luteus, E. aerogenes, S. aureus, and C. albicans, and the titled complex was found to be active against all the tested strains.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.