Comparative analysis of orbital sensors in soybean yield estimation by the random forest algorithm

IF 1.2 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY Ciencia E Agrotecnologia Pub Date : 2023-07-03 DOI:10.1590/1413-7054202347002423
D. Batistella, A. Modolo, J. R. R. Campos, V. Lima
{"title":"Comparative analysis of orbital sensors in soybean yield estimation by the random forest algorithm","authors":"D. Batistella, A. Modolo, J. R. R. Campos, V. Lima","doi":"10.1590/1413-7054202347002423","DOIUrl":null,"url":null,"abstract":"ABSTRACT Remote sensing has proven to be a promising tool allowing crop monitoring over large geographic areas. In addition, when combined with machine learning methods, the algorithms can be used for estimating crop yield. This study sought to estimate soybean yield through the enhanced vegetation index and normalized difference vegetation index. These vegetation indices were obtained using moderate-resolution imaging spectro-radiometer (MODIS) sensors on AQUA and TERRA satellites and multispectral instrument (MSI) sensor on Sentinel-2 satellite. Random forest (RF) algorithm was used to predict soybean yield and the estimation models were compared with the actual plot’s yield. The RF algorithm showed good performance to estimate soybean yield with our models (R2 = 0.60 and RMSE = 0.50 for MSI; R² = 0.63 and RMSE = 0.59 for MODIS). Vegetation indices with imaging dates corresponding to the crop’s maturation had a higher degree of importance in its predictive ability. However, when comparing the actual and predicted soybean production values, differences of 145 kg ha-1 in contrast to 4 kg ha-1 were found for the MODIS and MSI models, respectively. Therefore, the MSI sensor integrated with machine learning algorithms accurately estimated crop yields.","PeriodicalId":10188,"journal":{"name":"Ciencia E Agrotecnologia","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia E Agrotecnologia","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1413-7054202347002423","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Remote sensing has proven to be a promising tool allowing crop monitoring over large geographic areas. In addition, when combined with machine learning methods, the algorithms can be used for estimating crop yield. This study sought to estimate soybean yield through the enhanced vegetation index and normalized difference vegetation index. These vegetation indices were obtained using moderate-resolution imaging spectro-radiometer (MODIS) sensors on AQUA and TERRA satellites and multispectral instrument (MSI) sensor on Sentinel-2 satellite. Random forest (RF) algorithm was used to predict soybean yield and the estimation models were compared with the actual plot’s yield. The RF algorithm showed good performance to estimate soybean yield with our models (R2 = 0.60 and RMSE = 0.50 for MSI; R² = 0.63 and RMSE = 0.59 for MODIS). Vegetation indices with imaging dates corresponding to the crop’s maturation had a higher degree of importance in its predictive ability. However, when comparing the actual and predicted soybean production values, differences of 145 kg ha-1 in contrast to 4 kg ha-1 were found for the MODIS and MSI models, respectively. Therefore, the MSI sensor integrated with machine learning algorithms accurately estimated crop yields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轨道传感器在随机森林大豆产量估计中的比较分析
遥感已被证明是一种很有前途的工具,可以在大的地理区域进行作物监测。此外,当与机器学习方法相结合时,该算法可用于估计作物产量。本研究试图通过增强植被指数和归一化差异植被指数估算大豆产量。这些植被指数是利用AQUA和TERRA卫星上的中分辨率成像光谱辐射计(MODIS)传感器和Sentinel-2卫星上的多光谱仪器(MSI)传感器获得的。采用随机森林(RF)算法对大豆产量进行预测,并将预测模型与地块实际产量进行比较。RF算法在预测大豆产量方面表现出良好的性能(MSI的R2 = 0.60, RMSE = 0.50;MODIS的R²= 0.63,RMSE = 0.59)。具有与作物成熟期相对应的成像日期的植被指数在预测能力上具有较高的重要性。然而,当比较实际和预测的大豆产值时,MODIS和MSI模型的差异分别为145 kg ha-1和4 kg ha-1。因此,集成了机器学习算法的MSI传感器可以准确地估计作物产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ciencia E Agrotecnologia
Ciencia E Agrotecnologia 农林科学-农业综合
CiteScore
2.30
自引率
9.10%
发文量
19
审稿时长
6-12 weeks
期刊介绍: A Ciência e Agrotecnologia, editada a cada 2 meses pela Editora da Universidade Federal de Lavras (UFLA), publica artigos científicos de interesse agropecuário elaborados por membros da comunidade científica nacional e internacional. A revista é distribuída em âmbito nacional e internacional para bibliotecas de Faculdades, Universidades e Instituições de Pesquisa.
期刊最新文献
Molecular characterization of common bean accessions using microsatellite markers Stocking density of red tilapia (Oreochromis sp.) reared in a commercial biofloc system in Colombia Edible coatings with avocado oil on the quality of ‘Tommy Atkins’ mangoes Identification of volatile compounds in salep (Serapias vomeracea) tubers and effects of harvest time and drying method on composition variation Adaptability and stability of mungbean genotypes in the Mid-North of Mato Grosso, Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1