Enhanced apatite precipitation on a biopolymer-coated bioactive glass

Q1 Materials Science Biomedical Glasses Pub Date : 2015-10-20 DOI:10.1515/bglass-2015-0011
M. Araújo, M. Miola, A. Venturello, G. Baldi, J. Pérez, E. Verné
{"title":"Enhanced apatite precipitation on a biopolymer-coated bioactive glass","authors":"M. Araújo, M. Miola, A. Venturello, G. Baldi, J. Pérez, E. Verné","doi":"10.1515/bglass-2015-0011","DOIUrl":null,"url":null,"abstract":"Abstract In this work, sintered pellets of a silica-based bioactive glass were dip-coated with a biocompatible natural-derived polymer in order to investigate the influence of the organic coating on the glass bioactivity. After the sintering process optimization, uncoated and coated pellets have been characterized by means of scanning electron microscopy with energy dispersive spectroscopy (SEM, EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and pH measurements, after the immersion in a simulated body fluid (SBF). An increased apatite forming ability and a better control of the pH during soaking of the samples in SBF were observed in the presence of the biopolymer. This result opens a new insight on the simple fabrication of highly bioactive hybrid inorganic-organic materials for medical applications.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2015-0011","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2015-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In this work, sintered pellets of a silica-based bioactive glass were dip-coated with a biocompatible natural-derived polymer in order to investigate the influence of the organic coating on the glass bioactivity. After the sintering process optimization, uncoated and coated pellets have been characterized by means of scanning electron microscopy with energy dispersive spectroscopy (SEM, EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and pH measurements, after the immersion in a simulated body fluid (SBF). An increased apatite forming ability and a better control of the pH during soaking of the samples in SBF were observed in the presence of the biopolymer. This result opens a new insight on the simple fabrication of highly bioactive hybrid inorganic-organic materials for medical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物聚合物涂层生物活性玻璃上磷灰石的增强沉淀
摘要本研究采用生物相容性天然聚合物浸渍法制备硅基生物活性玻璃颗粒,研究有机涂层对玻璃生物活性的影响。烧结工艺优化后,在模拟体液(SBF)中浸泡后,通过扫描电镜、能谱分析(SEM, EDS)、x射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)和pH测量对未包覆和包覆微球进行了表征。在生物聚合物存在的情况下,样品在SBF中浸泡时磷灰石形成能力增强,pH控制更好。这一结果为简单制造用于医疗应用的高生物活性无机-有机杂化材料提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Glasses
Biomedical Glasses Materials Science-Surfaces, Coatings and Films
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊介绍: Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.
期刊最新文献
Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering Novel borosilicate bioactive scaffolds with persistent luminescence Modelling the elastic mechanical properties of bioactive glass-derived scaffolds Tantalum doped SiO2-CaO-P2O5 based bioactive glasses: Investigation of in vitro bioactivity and antibacterial activities Yttrium doped phosphate-based glasses: structural and degradation analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1