After bleaching enamel remineralization using a bioactive glass-ceramic (BioSilicate®)

Q1 Materials Science Biomedical Glasses Pub Date : 2016-01-01 DOI:10.1515/bglass-2016-0001
A. Rastelli, G. Nicolodelli, R. A. Romano, D. Milori, I. L. O. Perazzoli, E. J. Ferreira, A. Pedroso, M. T. Souza, O. Peitl, Edgar Dutra Zanotto
{"title":"After bleaching enamel remineralization using a bioactive glass-ceramic (BioSilicate®)","authors":"A. Rastelli, G. Nicolodelli, R. A. Romano, D. Milori, I. L. O. Perazzoli, E. J. Ferreira, A. Pedroso, M. T. Souza, O. Peitl, Edgar Dutra Zanotto","doi":"10.1515/bglass-2016-0001","DOIUrl":null,"url":null,"abstract":"Abstract Tooth bleaching agents may weaken the tooth structure, therefore, it is important to minimize any risks of enamel and dentine damage caused by them. In this way, different materials have been used to avoid or minimize the tooth damage during bleaching. Recently, bioactive glasses have been demonstrated to be effective in mineralization of dental structures. Therefore, this study evaluated the effect of BioSilicate® (a polycrystalline bioactive glass-ceramic) after bleaching by Laser-induced breakdown spectroscopy (LIBS) technique. Bovine dental blocks with 4 × 4 × 3 mm were obtained (n = 20), sequentially embedded in epoxy resin and then polished. Bleaching was performed using 35% hydrogen peroxide (Whiteness HP). Calcium (Ca) and phosphate (P) intensity values by LIBSwere obtained before the treatment (T0, baseline – control Group), after bleaching (T1), and after BioSilicate® application (T2). The use of BioSilicate® after bleaching showed to be an optimal way to remineralize enamel surface making BioSilicate® application a promising adjunct step to avoid or minimize the mineral loss on enamel surface after bleaching.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2016-0001","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2016-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 11

Abstract

Abstract Tooth bleaching agents may weaken the tooth structure, therefore, it is important to minimize any risks of enamel and dentine damage caused by them. In this way, different materials have been used to avoid or minimize the tooth damage during bleaching. Recently, bioactive glasses have been demonstrated to be effective in mineralization of dental structures. Therefore, this study evaluated the effect of BioSilicate® (a polycrystalline bioactive glass-ceramic) after bleaching by Laser-induced breakdown spectroscopy (LIBS) technique. Bovine dental blocks with 4 × 4 × 3 mm were obtained (n = 20), sequentially embedded in epoxy resin and then polished. Bleaching was performed using 35% hydrogen peroxide (Whiteness HP). Calcium (Ca) and phosphate (P) intensity values by LIBSwere obtained before the treatment (T0, baseline – control Group), after bleaching (T1), and after BioSilicate® application (T2). The use of BioSilicate® after bleaching showed to be an optimal way to remineralize enamel surface making BioSilicate® application a promising adjunct step to avoid or minimize the mineral loss on enamel surface after bleaching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用生物活性玻璃陶瓷(bio硅酸盐®)漂白牙釉质再矿化
牙齿漂白剂可能会削弱牙齿的结构,因此,尽量减少它们对牙釉质和牙本质的损害是很重要的。因此,不同的材料被用来避免或减少牙齿在漂白过程中的损伤。近年来,生物活性玻璃已被证明是有效的矿化牙齿结构。因此,本研究利用激光诱导击穿光谱(LIBS)技术评估了生物硅酸盐(一种多晶生物活性玻璃陶瓷)漂白后的效果。获得4 × 4 × 3 mm的牛牙块(n = 20),依次包埋在环氧树脂中,然后抛光。使用35%过氧化氢(白度HP)进行漂白。在处理前(T0,基线-对照组)、漂白后(T1)和应用BioSilicate®后(T2),通过libs4测定钙(Ca)和磷酸盐(P)强度值。漂白后使用生物硅酸盐®是牙釉质表面再矿化的最佳方法,使生物硅酸盐®应用成为避免或尽量减少漂白后牙釉质表面矿物损失的有希望的辅助步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Glasses
Biomedical Glasses Materials Science-Surfaces, Coatings and Films
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊介绍: Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.
期刊最新文献
Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering Novel borosilicate bioactive scaffolds with persistent luminescence Modelling the elastic mechanical properties of bioactive glass-derived scaffolds Tantalum doped SiO2-CaO-P2O5 based bioactive glasses: Investigation of in vitro bioactivity and antibacterial activities Yttrium doped phosphate-based glasses: structural and degradation analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1