Effect of Plasma-Activated Water on Soaking, Germination, and Vigor of Erythrina velutina Seeds

Q3 Physics and Astronomy Plasma Medicine Pub Date : 2019-01-01 DOI:10.1615/plasmamed.2019031667
C. A. Júnior, F. L. D. Menezes, J. O. Vitoriano, D. L. D. Silva
{"title":"Effect of Plasma-Activated Water on Soaking, Germination, and Vigor of Erythrina velutina Seeds","authors":"C. A. Júnior, F. L. D. Menezes, J. O. Vitoriano, D. L. D. Silva","doi":"10.1615/plasmamed.2019031667","DOIUrl":null,"url":null,"abstract":": In this study, physiology, germination, and seedling growth of seeds were analyzed after immersion in plasma-activated water. A dielectric barrier discharge (DBD) plasma dripper was developed to treat the water. Erythrina velutina seeds were immersed in water plasma-activat-ed at a peak-to-peak voltage of 37, 43, or 49 kV and monitored during imbibition. While the seeds were imbibing, pH, electrical conductivity, and UV-Vis absorption of the exudate were measured. The seeds released substances during imbibition, maintaining pH between 5 and 6. This fact may be used as a strategy to control plant physiology and seed germination. It was observed that water treated at a voltage of 49 kV presented higher germination rates and seed vigor. Physiological as-pects that explain this effect and its consequences on germinative response are discussed. KEY WORDS:","PeriodicalId":53607,"journal":{"name":"Plasma Medicine","volume":"169 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1615/plasmamed.2019031667","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/plasmamed.2019031667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 5

Abstract

: In this study, physiology, germination, and seedling growth of seeds were analyzed after immersion in plasma-activated water. A dielectric barrier discharge (DBD) plasma dripper was developed to treat the water. Erythrina velutina seeds were immersed in water plasma-activat-ed at a peak-to-peak voltage of 37, 43, or 49 kV and monitored during imbibition. While the seeds were imbibing, pH, electrical conductivity, and UV-Vis absorption of the exudate were measured. The seeds released substances during imbibition, maintaining pH between 5 and 6. This fact may be used as a strategy to control plant physiology and seed germination. It was observed that water treated at a voltage of 49 kV presented higher germination rates and seed vigor. Physiological as-pects that explain this effect and its consequences on germinative response are discussed. KEY WORDS:
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血浆活化水对绒红草种子浸泡、萌发及活力的影响
在本研究中,对等离子活化水浸泡后的种子进行了生理、萌发和幼苗生长的分析。研制了介质阻挡放电等离子体滴管对废水进行处理。在37、43或49千伏的峰值电压下,将绒红雀种子浸泡在水等离子体中,并在渗吸过程中进行监测。在吸收种子的同时,测量了渗出液的pH值、电导率和UV-Vis吸收。种子在吸胀过程中释放物质,pH值维持在5 ~ 6之间。这一事实可以作为控制植物生理和种子萌发的策略。结果表明,在49 kV电压下处理的水具有较高的发芽率和种子活力。讨论了解释这种效应的生理方面及其对发芽反应的影响。关键词:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Medicine
Plasma Medicine Physics and Astronomy-Physics and Astronomy (all)
CiteScore
1.40
自引率
0.00%
发文量
14
期刊介绍: Technology has always played an important role in medicine and there are many journals today devoted to medical applications of ionizing radiation, lasers, ultrasound, magnetic resonance and others. Plasma technology is a relative newcomer to the field of medicine. Experimental work conducted at several major universities, research centers and companies around the world over the recent decade demonstrates that plasma can be used in variety of medical applications. It is already widely used surgeries and endoscopic procedures. It has been shown to control properties of cellular and tissue matrices, including biocompatibility of various substrates. Non-thermal plasma has been demonstrated to deactivate dangerous pathogens and to stop bleeding without damaging healthy tissue. It can be used to promote wound healing and to treat cancer. Understanding of various mechanisms by which plasma can interact with living systems, including effects of reactive oxygen species, reactive nitrogen species and charges, has begun to emerge recently. The aim of the Plasma Medicine journal will be to provide a forum where the above topics as well as topics closely related to them can be presented and discussed. Existing journals on plasma science and technology are aimed for audiences with primarily engineering and science background. The field of Plasma Medicine, on the other hand, is highly interdisciplinary. Some of prospective readers and contributors of the Plasma Medicine journal are expected to have background in medicine and biology. Others might be more familiar with plasma science. The goal of the proposed Plasma Medicine journal is to bridge the gap between audiences with such different backgrounds, without sacrificing the quality of the papers be their emphasis on medicine, biology or plasma science and technology.
期刊最新文献
Review on Cold Plasma as a Practical Approach to Cancer Treatment Study of the Possible Cytogenetic and Immunological Effects of Cold Atmospheric Pressure Plasma Jet on Whole Blood Cultures of Vitiligo Patients. Thermal effect of laser on silver nanoparticles synthesized by cold plasma method on cancer cells Gas temperature effect in methane DBD reactor for hydrogen production Inactivation of Escherichia coli in small diameter tubes by remote plasmas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1