V. Taran, I. Garkusha, O. Tymoshenko, A. Taran, I. O. Misiruk, T. Skoblo, S. Romaniuk, V. Starikov, A. Baturin, G. Nikolaychuk
{"title":"Development of Niobium Based Coatings Prepared by Ion-Plasma Vacuum-Arc Deposition","authors":"V. Taran, I. Garkusha, O. Tymoshenko, A. Taran, I. O. Misiruk, T. Skoblo, S. Romaniuk, V. Starikov, A. Baturin, G. Nikolaychuk","doi":"10.1615/plasmamed.2020034060","DOIUrl":null,"url":null,"abstract":"Comparative studies of niobium carbide and niobium carbonitride coatings deposited on AISI 430 stainless steel have been presented. The NbC and NbCN coatings have been deposited by vacuum-arc evaporation in Bulat-type device by using the pulsed biasing mode with repetition frequency 50 kHz, allowing decreasing the micro-arcs formation. An additional magnetic coil for plasma flow focusing was used, allowing one to enhance deposition rate up to 35 μm/h. The phase composition of the obtained coatings was analyzed via X-ray diffraction. The surface morphology was monitored by scanning electron microscopy; whereas, chemical composition was examined by using energy dispersive X-ray analysis. X-ray fluorescent analysis was used to evaluate the thickness of the coatings. The reflectance R(λ) of the obtained coatings in the wavelength 300–625 nm at normal incidence was measured. The XRD data from NbC coating revealed the existence of the niobium carbide phase with a NaCl-type lattice with fine-crystalline grains ranging from 14 to 16 nm. For the NbCN coating, the two-phase state with c-NbC and hexagonal NbN0.95 phases was monitored. The average grain size for c-NbC phase comprised 16–17 nm; whereas, for NbN0.95 the average grain size was only 1–2 nm, confirming formation of a nanocrystalline structure. Surface nanomechanical behavior under nanoindentation of NbC and NbCN was studied. It was revealed that nanohardness for a NbC coating was varied from 30 to 43 GPa; whereas, for NbCN the data spread comprised 30–48 GPa. It was established that the surface of the grown coatings was very smooth with an extremely low amount of macroparticles.","PeriodicalId":53607,"journal":{"name":"Plasma Medicine","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1615/plasmamed.2020034060","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/plasmamed.2020034060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 2
Abstract
Comparative studies of niobium carbide and niobium carbonitride coatings deposited on AISI 430 stainless steel have been presented. The NbC and NbCN coatings have been deposited by vacuum-arc evaporation in Bulat-type device by using the pulsed biasing mode with repetition frequency 50 kHz, allowing decreasing the micro-arcs formation. An additional magnetic coil for plasma flow focusing was used, allowing one to enhance deposition rate up to 35 μm/h. The phase composition of the obtained coatings was analyzed via X-ray diffraction. The surface morphology was monitored by scanning electron microscopy; whereas, chemical composition was examined by using energy dispersive X-ray analysis. X-ray fluorescent analysis was used to evaluate the thickness of the coatings. The reflectance R(λ) of the obtained coatings in the wavelength 300–625 nm at normal incidence was measured. The XRD data from NbC coating revealed the existence of the niobium carbide phase with a NaCl-type lattice with fine-crystalline grains ranging from 14 to 16 nm. For the NbCN coating, the two-phase state with c-NbC and hexagonal NbN0.95 phases was monitored. The average grain size for c-NbC phase comprised 16–17 nm; whereas, for NbN0.95 the average grain size was only 1–2 nm, confirming formation of a nanocrystalline structure. Surface nanomechanical behavior under nanoindentation of NbC and NbCN was studied. It was revealed that nanohardness for a NbC coating was varied from 30 to 43 GPa; whereas, for NbCN the data spread comprised 30–48 GPa. It was established that the surface of the grown coatings was very smooth with an extremely low amount of macroparticles.
Plasma MedicinePhysics and Astronomy-Physics and Astronomy (all)
CiteScore
1.40
自引率
0.00%
发文量
14
期刊介绍:
Technology has always played an important role in medicine and there are many journals today devoted to medical applications of ionizing radiation, lasers, ultrasound, magnetic resonance and others. Plasma technology is a relative newcomer to the field of medicine. Experimental work conducted at several major universities, research centers and companies around the world over the recent decade demonstrates that plasma can be used in variety of medical applications. It is already widely used surgeries and endoscopic procedures. It has been shown to control properties of cellular and tissue matrices, including biocompatibility of various substrates. Non-thermal plasma has been demonstrated to deactivate dangerous pathogens and to stop bleeding without damaging healthy tissue. It can be used to promote wound healing and to treat cancer. Understanding of various mechanisms by which plasma can interact with living systems, including effects of reactive oxygen species, reactive nitrogen species and charges, has begun to emerge recently. The aim of the Plasma Medicine journal will be to provide a forum where the above topics as well as topics closely related to them can be presented and discussed. Existing journals on plasma science and technology are aimed for audiences with primarily engineering and science background. The field of Plasma Medicine, on the other hand, is highly interdisciplinary. Some of prospective readers and contributors of the Plasma Medicine journal are expected to have background in medicine and biology. Others might be more familiar with plasma science. The goal of the proposed Plasma Medicine journal is to bridge the gap between audiences with such different backgrounds, without sacrificing the quality of the papers be their emphasis on medicine, biology or plasma science and technology.