Determination of the Acoustic Wave Velocity and Attenuation in Liquids with Different Acoustic Impedances Using an Acoustic Interferometer

IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Acoustical Physics Pub Date : 2023-09-16 DOI:10.1134/S1063771023600493
B. D. Zaitsev, I. A. Borodina, A. A. Teplykh, A. P. Semyonov
{"title":"Determination of the Acoustic Wave Velocity and Attenuation in Liquids with Different Acoustic Impedances Using an Acoustic Interferometer","authors":"B. D. Zaitsev,&nbsp;I. A. Borodina,&nbsp;A. A. Teplykh,&nbsp;A. P. Semyonov","doi":"10.1134/S1063771023600493","DOIUrl":null,"url":null,"abstract":"<div><p>Theoretical and experimental features of using an acoustic interferometer for determining the velocity and attenuation of an acoustic wave in liquids with different acoustic impedances are studied. It is shown for the first time that the indicated impedance determines the ratio of the resonance values of the maximum and minimum transmission coefficient <i>S</i><sub>12</sub> for the same transmitter–receiver pair on the dependence of the transmission coefficient on the distance between the transducers. A methodology has been developed for determining the wave attenuation of a liquid free from the influence of “apparent” attenuation associated with the loss of part of the acoustic power to the transducers.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"69 4","pages":"503 - 509"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771023600493","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Theoretical and experimental features of using an acoustic interferometer for determining the velocity and attenuation of an acoustic wave in liquids with different acoustic impedances are studied. It is shown for the first time that the indicated impedance determines the ratio of the resonance values of the maximum and minimum transmission coefficient S12 for the same transmitter–receiver pair on the dependence of the transmission coefficient on the distance between the transducers. A methodology has been developed for determining the wave attenuation of a liquid free from the influence of “apparent” attenuation associated with the loss of part of the acoustic power to the transducers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用声波干涉仪测定不同声阻抗液体中的声速和衰减
研究了用声波干涉仪测定不同声阻抗液体中声波的速度和衰减的理论和实验特点。首次表明,指示阻抗决定了同一收发对最大和最小传输系数S12的共振值与传输系数与换能器之间距离的依赖关系。已经开发了一种方法,用于确定液体的波衰减,而不受与换能器部分声功率损失相关的“表观”衰减的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acoustical Physics
Acoustical Physics 物理-声学
CiteScore
1.60
自引率
50.00%
发文量
58
审稿时长
3.5 months
期刊介绍: Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Peculiarities of Flexural Wave Propagation in a Notched Bar Interference of Echo Signals from Spherical Scatterers Located Near the Bottom Theoretical and Experimental Study of Diffraction by a Thin Cone Thermal Ablation of Biological Tissue by Sonicating Discrete Foci in a Specified Volume with a Single Wave Burst with Shocks On the Evolution of a System of Shock Waves Created by Engine Fan Blades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1