NUMERICAL STUDY OF COUPLED MOLECULAR GAS RADIATION AND NATURAL CONVECTION IN A DIFFERENTIALLY HEATED CUBICAL CAVITY

IF 1.3 Q3 THERMODYNAMICS Computational Thermal Sciences Pub Date : 2012-01-01 DOI:10.1615/COMPUTTHERMALSCIEN.2012005118
L. Soucasse, P. Riviere, S. Xin, P. Quéré, A. Soufiani
{"title":"NUMERICAL STUDY OF COUPLED MOLECULAR GAS RADIATION AND NATURAL CONVECTION IN A DIFFERENTIALLY HEATED CUBICAL CAVITY","authors":"L. Soucasse, P. Riviere, S. Xin, P. Quéré, A. Soufiani","doi":"10.1615/COMPUTTHERMALSCIEN.2012005118","DOIUrl":null,"url":null,"abstract":"The coupling between natural convection and gas and wall radiation is studied numerically in a differentially heated cubical cavity filled with an air/CO2/H2O mixture. In order to solve coupled flow, heat transfer, and radiation equations, we develop a 3D radiative transfer model based on the deterministic ray tracing method, coupled with a pseudo-spectral Chebyshev method for natural convection under Boussinesq approximation. An absorption distribution function (ADF) model is used to describe gas radiative properties. Coupled simulations are performed at Ra = 105, 106, and 3 × 107, considering wall and/or gas radiation. Steady solutions were obtained except at the highest Rayleigh number in the case of radiating walls. Results show a strong influence of radiative transfer on temperature and velocity fields. The global homogenization of the temperature field induced by radiation leads to a decrease of the thermal stratification parameter. Two different mechanisms leading to this behavior, involving either wall/wall or gas radiative exchanges, are identified. In addition, we observe a thickening of the vertical boundary layers and an increase of the global circulation in the cavity. The influence of the Rayleigh number and 3D effects are also discussed.","PeriodicalId":45052,"journal":{"name":"Computational Thermal Sciences","volume":"4 1","pages":"335-350"},"PeriodicalIF":1.3000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/COMPUTTHERMALSCIEN.2012005118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 23

Abstract

The coupling between natural convection and gas and wall radiation is studied numerically in a differentially heated cubical cavity filled with an air/CO2/H2O mixture. In order to solve coupled flow, heat transfer, and radiation equations, we develop a 3D radiative transfer model based on the deterministic ray tracing method, coupled with a pseudo-spectral Chebyshev method for natural convection under Boussinesq approximation. An absorption distribution function (ADF) model is used to describe gas radiative properties. Coupled simulations are performed at Ra = 105, 106, and 3 × 107, considering wall and/or gas radiation. Steady solutions were obtained except at the highest Rayleigh number in the case of radiating walls. Results show a strong influence of radiative transfer on temperature and velocity fields. The global homogenization of the temperature field induced by radiation leads to a decrease of the thermal stratification parameter. Two different mechanisms leading to this behavior, involving either wall/wall or gas radiative exchanges, are identified. In addition, we observe a thickening of the vertical boundary layers and an increase of the global circulation in the cavity. The influence of the Rayleigh number and 3D effects are also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微分加热方腔中分子气体辐射与自然对流耦合的数值研究
在充满空气/CO2/H2O混合物的差热立方腔中,对自然对流与气体和壁面辐射的耦合进行了数值研究。为了求解流动、传热和辐射耦合方程,我们建立了基于确定性射线追踪法的三维辐射传递模型,并结合Boussinesq近似下自然对流的伪谱Chebyshev方法。采用吸收分布函数(ADF)模型来描述气体的辐射特性。在考虑壁辐射和/或气体辐射的情况下,在Ra = 105、106和3 × 107下进行了耦合模拟。除辐射壁的瑞利数最高外,均得到稳定解。结果表明,辐射传输对温度场和速度场有很强的影响。辐射引起的温度场全局均匀化导致热分层参数减小。确定了导致这种行为的两种不同机制,包括壁/壁或气体辐射交换。此外,我们观察到垂直边界层增厚,空腔内的全球环流增加。讨论了瑞利数和三维效应的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
6.70%
发文量
36
期刊最新文献
Validation of Computational Modeling of Complex Thermal Processes and Systems: A Tribute to Professor Darrell Pepper Primary Breakup Instability of Liquid Jet in Crossflow COUPLED EFFECT OF VARIABLE WETTABILITY AND BODY FORCE ON FLUID FLOW THROUGH NANOCHANNELS: A MULTISCALE APPROACH Landau Legendre Wavelet Galerkin Method Applied to Study Two Phase Moving Boundary Problem of Heat Transfer in Finite Region Simulating Spray Dynamics with a Finite Element Method for Internal Combustion Engines using Large Eddy Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1