A Review on Implantable Neuroelectrodes.

Jithin Krishnan, Roy Joseph, Muraleedharan Chirathodiyil Vayalappil, Syam Krishnan, Asha Kishore
{"title":"A Review on Implantable Neuroelectrodes.","authors":"Jithin Krishnan, Roy Joseph, Muraleedharan Chirathodiyil Vayalappil, Syam Krishnan, Asha Kishore","doi":"10.1615/CritRevBiomedEng.2023049282","DOIUrl":null,"url":null,"abstract":"<p><p>The efficacy of every neuromodulation modality depends upon the characteristics of the electrodes used to stimulate the chosen target. The geometrical, chemical, mechanical and physical configuration of electrodes used in neurostimulation affects several performance attributes like stimulation efficiency, selectivity, tissue response, etc. The efficiency of stimulation in relation to electrode impedance is influenced by the electrode material and/or its geometry. The nature of the electrode material determines the charge transfer across the electrode-tissue interface, which also relates to neuronal tissue damage. Electrode morphology or configuration pattern can facilitate the modulation of extracellular electric field (field shaping). This enables selective activation of neurons and minimizes side effects. Biocompatibility and biostability of the electrode materials or electrode coating have a role in glial formation and tissue damage. Mechanical and electrochemical stability (corrosion resistance) determines the long-term efficacy of any neuromodulation technique. Here, a review of electrodes typically used for implantable neuromodulation is discussed. Factors affecting the performance of electrodes like stimulation efficiency, selectivity and tissue responses to the electrode-tissue interface are discussed. Technological advancements to improve electrode characteristics are also included.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"1 1","pages":"21-39"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2023049282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The efficacy of every neuromodulation modality depends upon the characteristics of the electrodes used to stimulate the chosen target. The geometrical, chemical, mechanical and physical configuration of electrodes used in neurostimulation affects several performance attributes like stimulation efficiency, selectivity, tissue response, etc. The efficiency of stimulation in relation to electrode impedance is influenced by the electrode material and/or its geometry. The nature of the electrode material determines the charge transfer across the electrode-tissue interface, which also relates to neuronal tissue damage. Electrode morphology or configuration pattern can facilitate the modulation of extracellular electric field (field shaping). This enables selective activation of neurons and minimizes side effects. Biocompatibility and biostability of the electrode materials or electrode coating have a role in glial formation and tissue damage. Mechanical and electrochemical stability (corrosion resistance) determines the long-term efficacy of any neuromodulation technique. Here, a review of electrodes typically used for implantable neuromodulation is discussed. Factors affecting the performance of electrodes like stimulation efficiency, selectivity and tissue responses to the electrode-tissue interface are discussed. Technological advancements to improve electrode characteristics are also included.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植入式神经电极综述。
每种神经调控模式的功效取决于用于刺激所选目标的电极的特性。神经刺激中使用的电极的几何、化学、机械和物理配置影响几个性能属性,如刺激效率、选择性、组织反应等。与电极阻抗相关的刺激效率受电极材料和/或其几何形状的影响。电极材料的性质决定了电极-组织界面上的电荷转移,这也与神经元组织损伤有关。电极形态或配置模式可以促进细胞外电场的调节(场成形)。这可以选择性地激活神经元,并最大限度地减少副作用。电极材料或电极涂层的生物相容性和生物稳定性在神经胶质形成和组织损伤中起作用。机械和电化学稳定性(耐腐蚀性)决定了任何神经调控技术的长期功效。在此,对典型用于植入式神经调控的电极进行了综述。讨论了影响电极性能的因素,如刺激效率、选择性和组织对电极-组织界面的反应。还包括改善电极特性的技术进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Critical Reviews in Biomedical Engineering
Critical Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
1.80
自引率
0.00%
发文量
25
期刊介绍: Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.
期刊最新文献
A Review on Implantable Neuroelectrodes. Using Fuzzy Mathematical Model in the Differential Diagnosis of Pancreatic Lesions Using Ultrasonography and Echographic Texture Analysis. Has Machine Learning Enhanced the Diagnosis of Autism Spectrum Disorder? Smart Microfluidics: Synergy of Machine Learning and Microfluidics in the Development of Medical Diagnostics for Chronic and Emerging Infectious Diseases. Engineers in Medicine: Foster Innovation by Traversing Boundaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1