{"title":"Structural, electrical, and thermistor behavior of BiFeO3-PbZrO3 for energy storage devices","authors":"P. Mallick, S. Biswal, S. K. Satpathy, B. Behera","doi":"10.1680/jemmr.21.00177","DOIUrl":null,"url":null,"abstract":"The solid-state reaction technique is used to prepare the samples 0.3(BiFeO3)–0.7(PbZrO3) and 0.5(BiFeO3)–0.5(PbZrO3). Structural parameters including percent crystallinity, dislocation density, microstrain, and the average size of crystallites are calculated using the X-Ray Diffraction (XRD) data at room temperature. The SEM micrographs reveal the spherical, densely packed natures of the samples with low porosity. Dielectric constant and dielectric loss increases with the rising content of Bismuth ferrite in the materials. The performance of the materials as an NTC thermistor in the temperature range 300–450°C is discussed. The values of the Thermistor constant (i.e. in the range of 3911–6247K) and the range of sensitivity index (−1 to −9%) confirmed the potential use of the samples as NTC thermistors. The frequency-dependent ac conductivity satisfies the universal Jonscher power law. The high density of states is determined from the frequency and temperature-dependent ac conductivity of the materials.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jemmr.21.00177","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The solid-state reaction technique is used to prepare the samples 0.3(BiFeO3)–0.7(PbZrO3) and 0.5(BiFeO3)–0.5(PbZrO3). Structural parameters including percent crystallinity, dislocation density, microstrain, and the average size of crystallites are calculated using the X-Ray Diffraction (XRD) data at room temperature. The SEM micrographs reveal the spherical, densely packed natures of the samples with low porosity. Dielectric constant and dielectric loss increases with the rising content of Bismuth ferrite in the materials. The performance of the materials as an NTC thermistor in the temperature range 300–450°C is discussed. The values of the Thermistor constant (i.e. in the range of 3911–6247K) and the range of sensitivity index (−1 to −9%) confirmed the potential use of the samples as NTC thermistors. The frequency-dependent ac conductivity satisfies the universal Jonscher power law. The high density of states is determined from the frequency and temperature-dependent ac conductivity of the materials.
期刊介绍:
Materials Research is constantly evolving and correlations between process, structure, properties and performance which are application specific require expert understanding at the macro-, micro- and nano-scale. The ability to intelligently manipulate material properties and tailor them for desired applications is of constant interest and challenge within universities, national labs and industry.