Allometric models to estimate peanuts leaflets area by non-destructive method

IF 1.2 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY Bragantia Pub Date : 2022-01-01 DOI:10.1590/1678-4499.20220121
J. Ribeiro, E. D. S. Coêlho, P. H. A. Oliveira, W. D. A. R. Lopes, E. F. D. Silva, A. K. S. D. Oliveira, Lindomar Maria da Silveira, D. V. Silva, A. P. Barros Júnior, T. J. Dias
{"title":"Allometric models to estimate peanuts leaflets area by non-destructive method","authors":"J. Ribeiro, E. D. S. Coêlho, P. H. A. Oliveira, W. D. A. R. Lopes, E. F. D. Silva, A. K. S. D. Oliveira, Lindomar Maria da Silveira, D. V. Silva, A. P. Barros Júnior, T. J. Dias","doi":"10.1590/1678-4499.20220121","DOIUrl":null,"url":null,"abstract":": The determination of leaf area is fundamental for studies related to plant growth and physiology. Thus, non-destructive methods allow an accurate estimate of the leaf area through linear dimensions of the leaves. The research objective was to construct allometric equations to estimate the leaflet area of peanut cultivars. Then, 2,605 leaflets were collected from six peanut cultivars (IAC Caiapó, IAC 8112, Runner IAC 886, BRS Havana, BRS 151 L7, and IAC Tatuí), with more than 400 leaflets sampled for each cultivar. We measured the length, width, product between length and width, and leaflet area. Linear and non-linear models (linear, linear without intercept, power, and exponential) were built, and the best equation was chosen using the statistical criteria: highest coefficient of determination (R 2 ), Pearson’s linear correlation coefficient (r), Willmott’s agreement index ( d ), lowest Akaike information criterion (AIC), and root mean square of the error (RMSE). It was found that the models that used the product between length and width were the most suitable for estimating the leaflet area of peanut cultivars. Given the little intraspecific morphological variability, it was possible to group the cultivars, and model ̂= 0.875 * LW 0.929 was indicated to estimate the peanut leaflet area accurately, regardless of the cultivar.","PeriodicalId":9260,"journal":{"name":"Bragantia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bragantia","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1678-4499.20220121","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

: The determination of leaf area is fundamental for studies related to plant growth and physiology. Thus, non-destructive methods allow an accurate estimate of the leaf area through linear dimensions of the leaves. The research objective was to construct allometric equations to estimate the leaflet area of peanut cultivars. Then, 2,605 leaflets were collected from six peanut cultivars (IAC Caiapó, IAC 8112, Runner IAC 886, BRS Havana, BRS 151 L7, and IAC Tatuí), with more than 400 leaflets sampled for each cultivar. We measured the length, width, product between length and width, and leaflet area. Linear and non-linear models (linear, linear without intercept, power, and exponential) were built, and the best equation was chosen using the statistical criteria: highest coefficient of determination (R 2 ), Pearson’s linear correlation coefficient (r), Willmott’s agreement index ( d ), lowest Akaike information criterion (AIC), and root mean square of the error (RMSE). It was found that the models that used the product between length and width were the most suitable for estimating the leaflet area of peanut cultivars. Given the little intraspecific morphological variability, it was possible to group the cultivars, and model ̂= 0.875 * LW 0.929 was indicated to estimate the peanut leaflet area accurately, regardless of the cultivar.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非破坏法估算花生小叶面积的异速生长模型
叶面积的测定是植物生长和生理研究的基础。因此,非破坏性方法允许通过叶片的线性尺寸准确估计叶面积。研究目的是建立估算花生品种小叶面积的异速生长方程。然后,从6个花生品种(IAC Caiapó、IAC 8112、Runner IAC 886、BRS Havana、BRS 151 L7和IAC Tatuí)中收集了2,605张小叶,每个品种采集400多张小叶。我们测量了长度,宽度,产品之间的长度和宽度,和传单面积。建立线性和非线性模型(线性、无截距线性、幂和指数),并根据最高决定系数(r2)、Pearson线性相关系数(R)、Willmott一致性指数(d)、最低Akaike信息准则(AIC)和误差均方根(RMSE)等统计标准选择最佳方程。结果表明,采用长度与宽度乘积的模型最适合估算花生品种的小叶面积。在种内形态变异较小的情况下,对不同品种进行分类是可能的,且不论品种,均可采用模型(n = 0.875 * LW 0.929)准确估计花生小叶面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bragantia
Bragantia AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
2.40
自引率
8.30%
发文量
33
审稿时长
4 weeks
期刊介绍: Bragantia é uma revista de ciências agronômicas editada pelo Instituto Agronômico da Agência Paulista de Tecnologia dos Agronegócios, da Secretaria de Agricultura e Abastecimento do Estado de São Paulo, com o objetivo de publicar trabalhos científicos originais que contribuam para o desenvolvimento das ciências agronômicas. A revista é publicada desde 1941, tornando-se semestral em 1984, quadrimestral em 2001 e trimestral em 2005. É filiada à Associação Brasileira de Editores Científicos (ABEC).
期刊最新文献
Corn straw return effectively improves the stability and increases the carbon and nitrogen contents of waterstable aggregates in northeastern China black soil Spermine decreases ethylene and increases sugars and phenolic compounds in nasturtium flowers grown under drought and salt stress Genetic divergence for seed traits in Passiflora full-sib families under recurrent selection for resistance to the cowpea aphid-borne mosaic virus Physiological and agronomic response of soybean cultivars to soil compaction in the Brazilian Cerrado Training systems improved agronomic characteristics and quality of ‘Niagara Rosada’ table grapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1