Analytical approach to relate evapotranspiration, canopyatmosphere coupling level, and water deficit sensitivity

IF 1.2 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY Bragantia Pub Date : 2023-03-20 DOI:10.1590/1678-4499.20220198
Fabio Ernesto Martinez Maldonado, F. Marin
{"title":"Analytical approach to relate evapotranspiration, canopyatmosphere coupling level, and water deficit sensitivity","authors":"Fabio Ernesto Martinez Maldonado, F. Marin","doi":"10.1590/1678-4499.20220198","DOIUrl":null,"url":null,"abstract":"The decoupling factor (Ω) reflects the leading mechanisms responsible for canopy transpiration and allows to know the relevance of the control of stomatal or canopy conductance on transpiration (T). The Ω is strongly dependent on water availability and can be a good approach to describe how plants minimize excessive water loss by increasing the dominance of biotic factors that controls evapotranspiration under water deficit conditions. We provided an overview of how the Ω concept can be broadly used and applied for studying the sensitivity of evapotranspiration and water conservation potential of canopies under water deficit conditions. A decoupling condition indicates that, under water deficit, the increase of canopy resistance will not have control over the transpiration. Therefore, a structural context of the canopy in which predominantly uncoupled regions will have a lower capacity to reduce evapotranspiration and avoid water losses. Furthermore, because of the water deficit, stomatal closure restricts photosynthesis more than transpiration, and water use efficiency can be lower in decoupled canopies compared to more coupled ones. Yet, we summarized the characteristics that depict structural context predisposing coupled or decoupled conditions that can indicate the capacity of canopy/crop to reduce excessive water losses and maintain a high assimilation/transpiration relation under water deficit.","PeriodicalId":9260,"journal":{"name":"Bragantia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bragantia","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1678-4499.20220198","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The decoupling factor (Ω) reflects the leading mechanisms responsible for canopy transpiration and allows to know the relevance of the control of stomatal or canopy conductance on transpiration (T). The Ω is strongly dependent on water availability and can be a good approach to describe how plants minimize excessive water loss by increasing the dominance of biotic factors that controls evapotranspiration under water deficit conditions. We provided an overview of how the Ω concept can be broadly used and applied for studying the sensitivity of evapotranspiration and water conservation potential of canopies under water deficit conditions. A decoupling condition indicates that, under water deficit, the increase of canopy resistance will not have control over the transpiration. Therefore, a structural context of the canopy in which predominantly uncoupled regions will have a lower capacity to reduce evapotranspiration and avoid water losses. Furthermore, because of the water deficit, stomatal closure restricts photosynthesis more than transpiration, and water use efficiency can be lower in decoupled canopies compared to more coupled ones. Yet, we summarized the characteristics that depict structural context predisposing coupled or decoupled conditions that can indicate the capacity of canopy/crop to reduce excessive water losses and maintain a high assimilation/transpiration relation under water deficit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒸散发、冠层-大气耦合水平和水分亏缺敏感性的分析方法
解耦因子(Ω)反映了负责冠层蒸腾的主要机制,并允许了解气孔或冠层导度对蒸腾控制的相关性(T)。Ω强烈依赖于水分有效性,可以很好地描述植物如何在水分亏缺条件下通过增加控制蒸散发的生物因子的优势来减少过多的水分损失。我们概述了Ω概念在水分亏缺条件下如何广泛应用于研究冠层蒸散敏感性和保水潜力。解耦条件表明,在水分亏缺条件下,冠层阻力的增加不会对蒸腾产生控制作用。因此,在冠层结构背景中,主要不耦合区域减少蒸散和避免水分损失的能力较低。此外,由于水分亏缺,气孔关闭对光合作用的限制大于蒸腾作用,与耦合程度较高的冠层相比,非耦合冠层的水分利用效率较低。然而,我们总结了结构背景的特征,这些特征倾向于耦合或解耦条件,可以表明冠层/作物减少过度水分损失的能力,并在水分亏缺的情况下保持高度的同化/蒸腾关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bragantia
Bragantia AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
2.40
自引率
8.30%
发文量
33
审稿时长
4 weeks
期刊介绍: Bragantia é uma revista de ciências agronômicas editada pelo Instituto Agronômico da Agência Paulista de Tecnologia dos Agronegócios, da Secretaria de Agricultura e Abastecimento do Estado de São Paulo, com o objetivo de publicar trabalhos científicos originais que contribuam para o desenvolvimento das ciências agronômicas. A revista é publicada desde 1941, tornando-se semestral em 1984, quadrimestral em 2001 e trimestral em 2005. É filiada à Associação Brasileira de Editores Científicos (ABEC).
期刊最新文献
Corn straw return effectively improves the stability and increases the carbon and nitrogen contents of waterstable aggregates in northeastern China black soil Spermine decreases ethylene and increases sugars and phenolic compounds in nasturtium flowers grown under drought and salt stress Genetic divergence for seed traits in Passiflora full-sib families under recurrent selection for resistance to the cowpea aphid-borne mosaic virus Physiological and agronomic response of soybean cultivars to soil compaction in the Brazilian Cerrado Training systems improved agronomic characteristics and quality of ‘Niagara Rosada’ table grapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1