{"title":"Decellularized scaffolds for neuronal regeneration","authors":"P. Raffa, A. Urciuolo","doi":"10.15761/JTS.1000371","DOIUrl":null,"url":null,"abstract":"The extracellular matrix (ECM) provides the three-dimensional structure of tissues, and is required for cell homing and cell viability, as well as for the overall homeostasis of tissues and organs [1,2]. The dynamic and complex microenvironment that the ECM generates in a specific manner for each tissue guarantees its functions [1,2]. During tissue regeneration ECM has been shown to play an essential role in controlling the tissue-stem cell compartment and to be involved in tissue regeneration outcome [3-6]. Tissue engineering combines extracellular natural and/or synthetic scaffolds (biomaterials) with stem cells and growth factors for the development of regenerative medicine strategies and the treatment of diseased tissues [7]. Despite the fact that incredible improvements have been achieved in biomaterial manufacturing, the peculiar and complex biochemistry, biomechanics and 3D organization proper of a tissue-specific ECM still cannot totally be reproduced in the lab [1,2,8]. Such complexity can however be preserved in scaffolds that take advantage of the native tissue themselves, as decellularized tissues or whole organs [9-11]. Decellularization process remove cellular and nuclear content retaining ECM mechanical integrity, biological activity and 3D architecture of the native tissue [10]. Decellularized tissues and/or organs represent alternative and promising scaffold material for the treatment of clinical cases in which extensive regeneration of an organ is required, as in cases of traumatic injuries, surgical ablation and congenital diseases [12]. Decellularized scaffolds have already been obtained from different organs and used for regenerative medicine strategies in animal models, as well as in clinical trials [12,13]. Ideally","PeriodicalId":74000,"journal":{"name":"Journal of translational science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of translational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15761/JTS.1000371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The extracellular matrix (ECM) provides the three-dimensional structure of tissues, and is required for cell homing and cell viability, as well as for the overall homeostasis of tissues and organs [1,2]. The dynamic and complex microenvironment that the ECM generates in a specific manner for each tissue guarantees its functions [1,2]. During tissue regeneration ECM has been shown to play an essential role in controlling the tissue-stem cell compartment and to be involved in tissue regeneration outcome [3-6]. Tissue engineering combines extracellular natural and/or synthetic scaffolds (biomaterials) with stem cells and growth factors for the development of regenerative medicine strategies and the treatment of diseased tissues [7]. Despite the fact that incredible improvements have been achieved in biomaterial manufacturing, the peculiar and complex biochemistry, biomechanics and 3D organization proper of a tissue-specific ECM still cannot totally be reproduced in the lab [1,2,8]. Such complexity can however be preserved in scaffolds that take advantage of the native tissue themselves, as decellularized tissues or whole organs [9-11]. Decellularization process remove cellular and nuclear content retaining ECM mechanical integrity, biological activity and 3D architecture of the native tissue [10]. Decellularized tissues and/or organs represent alternative and promising scaffold material for the treatment of clinical cases in which extensive regeneration of an organ is required, as in cases of traumatic injuries, surgical ablation and congenital diseases [12]. Decellularized scaffolds have already been obtained from different organs and used for regenerative medicine strategies in animal models, as well as in clinical trials [12,13]. Ideally