Path Tracking Control Based on an Adaptive MPC to Changing Vehicle Dynamics

John M. Guirguis, S. Hammad, S. Maged
{"title":"Path Tracking Control Based on an Adaptive MPC to Changing Vehicle Dynamics","authors":"John M. Guirguis, S. Hammad, S. Maged","doi":"10.18178/ijmerr.11.7.535-541","DOIUrl":null,"url":null,"abstract":"In this paper, an adaptive Model Predictive Controller (MPC) is proposed as a solution for path tracking control problem for autonomous vehicles. The effect of feeding the MPC with a continuously changing vehicle’s mathematical model is studied, so that the controller becomes more adaptable to changing parameter values accompanied with instantaneous states. The proposed MPC is compared with both Stanley controller and a similar MPC that uses a fixed vehicle model. The performance is measured by the ability to minimize both lateral position and heading angle errors. A dynamic bicycle model for the vehicle is deployed in the MPC and the controllers are simulated in CarSimMATLAB/Simulink co-simulation environment using three common maneuvers: S-Road, double lane change and curved road. Results show that the proposed controller gives better tracking performance than the two others with minimal instantaneous and root mean square RMS errors.","PeriodicalId":37784,"journal":{"name":"International Journal of Mechanical Engineering and Robotics Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijmerr.11.7.535-541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, an adaptive Model Predictive Controller (MPC) is proposed as a solution for path tracking control problem for autonomous vehicles. The effect of feeding the MPC with a continuously changing vehicle’s mathematical model is studied, so that the controller becomes more adaptable to changing parameter values accompanied with instantaneous states. The proposed MPC is compared with both Stanley controller and a similar MPC that uses a fixed vehicle model. The performance is measured by the ability to minimize both lateral position and heading angle errors. A dynamic bicycle model for the vehicle is deployed in the MPC and the controllers are simulated in CarSimMATLAB/Simulink co-simulation environment using three common maneuvers: S-Road, double lane change and curved road. Results show that the proposed controller gives better tracking performance than the two others with minimal instantaneous and root mean square RMS errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应MPC的车辆动态路径跟踪控制
针对自动驾驶汽车的路径跟踪控制问题,提出了一种自适应模型预测控制器(MPC)。研究了用连续变化的车辆数学模型馈送MPC的效果,使控制器更能适应随瞬时状态变化的参数值。提出的MPC与斯坦利控制器和使用固定车辆模型的类似MPC进行了比较。性能是通过最小化横向位置和航向角度误差的能力来衡量的。在MPC中建立了车辆的动态自行车模型,并在CarSimMATLAB/Simulink联合仿真环境中对控制器进行了S-Road、双变道和弯道三种常见机动方式的仿真。结果表明,该控制器具有较好的跟踪性能,且瞬时误差和均方根误差最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
25
期刊介绍: International Journal of Mechanical Engineering and Robotics Research. IJMERR is a scholarly peer-reviewed international scientific journal published bimonthly, focusing on theories, systems, methods, algorithms and applications in mechanical engineering and robotics. It provides a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Mechanical Engineering and Robotics Research.
期刊最新文献
Design and Fabrication of a Semi-Automatic Multifunction Floor Cleaning Machine Effect Of Cutting Parameters On Tool Tip Temperature And Cutting Forces Of Copper Alloy Design and Development of Robot Base Crack Detection System for Railway Track Improving the Efficiency of a Conveyor System in an Automated Manufacturing Environment Using a Model-Based Approach Dimensional Synthesis of a Six-bar Shaper Mechanism with the Genetic Algorithm Optimization Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1