{"title":"A semi-supervised agglomerative hierarchical clustering method based on dynamically updating constraints","authors":"Chenxi Zhou, Xun Liang, Jinshan Qi","doi":"10.16383/J.AAS.2015.C140859","DOIUrl":null,"url":null,"abstract":"A semi-supervised agglomerative hierarchical clustering method based on dynamically updating constraints is proposing in this research. Following the existing semi-supervised clustering algorithm, this method uses the must-link and cannot-link constraints. Instead of using the idea that the instances with must-link constraints are pre-clustered before agglomerating with the others, this method employs a more general and reasonable process. Firstly, must-link and cannot-link constraints are expanded to compose a constraints closure. Then, a standard agglomeration instructed by cannot-link constraints is processed. During this procedure, the must-link and cannot-link are dynamically updated according to the intermediate clustering results. This updating process guarantees the validity of the final results. The fundamental advantage of this method is omitting the pre-clustering process of the instances with must-link constraints. This modification ensures that data points gain a more reasonable agglomeration order, which may result in a significant improvement on the clustering results. This research also introduces an implementation of this model based on Ward0s method, leading to the C-Ward algorithm. The experimental analyses on both Artificial simulated datasets and real world datasets show that this method is much better than the others.","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"41 1","pages":"1253-1263"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.16383/J.AAS.2015.C140859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
Abstract
A semi-supervised agglomerative hierarchical clustering method based on dynamically updating constraints is proposing in this research. Following the existing semi-supervised clustering algorithm, this method uses the must-link and cannot-link constraints. Instead of using the idea that the instances with must-link constraints are pre-clustered before agglomerating with the others, this method employs a more general and reasonable process. Firstly, must-link and cannot-link constraints are expanded to compose a constraints closure. Then, a standard agglomeration instructed by cannot-link constraints is processed. During this procedure, the must-link and cannot-link are dynamically updated according to the intermediate clustering results. This updating process guarantees the validity of the final results. The fundamental advantage of this method is omitting the pre-clustering process of the instances with must-link constraints. This modification ensures that data points gain a more reasonable agglomeration order, which may result in a significant improvement on the clustering results. This research also introduces an implementation of this model based on Ward0s method, leading to the C-Ward algorithm. The experimental analyses on both Artificial simulated datasets and real world datasets show that this method is much better than the others.
自动化学报Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍:
ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.