Satellite-based estimation of NO2 concentrations using a machine-learning model: a case study on Rio Grande do Sul, Brazil

IF 1 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Atmosfera Pub Date : 2022-08-02 DOI:10.20937/atm.53116
A. Becerra-Rondon, J. Ducati, R. Haag
{"title":"Satellite-based estimation of NO2 concentrations using a machine-learning model: a\n case study on Rio Grande do Sul, Brazil","authors":"A. Becerra-Rondon, J. Ducati, R. Haag","doi":"10.20937/atm.53116","DOIUrl":null,"url":null,"abstract":"Nitrogen dioxide (NO2) is one of the most important atmospheric pollutants,\n affecting human health (increasing susceptibility to respiratory infections) and the\n environment (soil and water acidification). In many regions of Brazil, NO2 measurements\n at ground level meet difficulties because there are few and unevenly distributed\n monitoring stations. Satellite observations combined with machine learning models can\n mitigate this lack of data. This paper report results from an investigation on the\n ability of a machine learning approach (a non-linear statistical Random Forest\n algorithm, hereafter RF) to reconstruct the long-term spatiotemporal ground-level NO2\n from 2006 to 2019 using as input parameters NO2 data retrieved from the Ozone Monitoring\n Instrument (OMI) sensor aboard AURA satellite, besides meteorological covariates and\n localized ground-level NO2 measurements. Results show that the RF model predicts NO2\n with an accuracy expressed by an R2=0.68 correlation based on a 10-fold\n cross-validation. The model also predicted a mean NO2 concentration of 18.73 μg∕m3 (±\n 3.86 μg∕m3). The total NO2 concentration over the entire region analyzed showed a\n decreasing trend (2.9 μg/𝑚3 𝑦𝑟−1), being 2006 the year with the higher concentrations\n and 2017 with the lowest. This study suggests that non-linear statistical algorithm\n reconstructions using RF can be complementary tools to in situ and satellite\n observations to NO2 mapping.","PeriodicalId":55576,"journal":{"name":"Atmosfera","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosfera","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.20937/atm.53116","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen dioxide (NO2) is one of the most important atmospheric pollutants, affecting human health (increasing susceptibility to respiratory infections) and the environment (soil and water acidification). In many regions of Brazil, NO2 measurements at ground level meet difficulties because there are few and unevenly distributed monitoring stations. Satellite observations combined with machine learning models can mitigate this lack of data. This paper report results from an investigation on the ability of a machine learning approach (a non-linear statistical Random Forest algorithm, hereafter RF) to reconstruct the long-term spatiotemporal ground-level NO2 from 2006 to 2019 using as input parameters NO2 data retrieved from the Ozone Monitoring Instrument (OMI) sensor aboard AURA satellite, besides meteorological covariates and localized ground-level NO2 measurements. Results show that the RF model predicts NO2 with an accuracy expressed by an R2=0.68 correlation based on a 10-fold cross-validation. The model also predicted a mean NO2 concentration of 18.73 μg∕m3 (± 3.86 μg∕m3). The total NO2 concentration over the entire region analyzed showed a decreasing trend (2.9 μg/𝑚3 𝑦𝑟−1), being 2006 the year with the higher concentrations and 2017 with the lowest. This study suggests that non-linear statistical algorithm reconstructions using RF can be complementary tools to in situ and satellite observations to NO2 mapping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习模型对二氧化氮浓度进行基于卫星的估计:以巴西南大德州里约热内卢为例研究
二氧化氮(NO2)是最重要的大气污染物之一,影响人类健康(增加呼吸道感染的易感性)和环境(土壤和水酸化)。在巴西的许多地区,由于监测站很少且分布不均,地面二氧化氮的测量遇到了困难。卫星观测与机器学习模型相结合可以缓解这种数据的缺乏。本文报告了一项关于机器学习方法(非线性统计随机森林算法,以下简称RF)的能力调查,该方法使用AURA卫星上臭氧监测仪器(OMI)传感器检索的NO2数据作为输入参数,除了气象协变量和局部地面NO2测量外,还可以重建2006年至2019年的长期时空地面NO2。结果表明,经10倍交叉验证,该模型预测NO2的相关系数R2=0.68。该模型还预测平均NO2浓度为18.73 μg∕m3(±3.86 μg∕m3)。整个区域NO2总浓度呈下降趋势(2.9 μg/𝑚3 -𝑟−1),2006年浓度最高,2017年最低。该研究表明,使用射频的非线性统计算法重建可以作为原位和卫星观测对NO2制图的补充工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmosfera
Atmosfera 地学-气象与大气科学
CiteScore
2.20
自引率
0.00%
发文量
46
审稿时长
6 months
期刊介绍: ATMÓSFERA seeks contributions on theoretical, basic, empirical and applied research in all the areas of atmospheric sciences, with emphasis on meteorology, climatology, aeronomy, physics, chemistry, and aerobiology. Interdisciplinary contributions are also accepted; especially those related with oceanography, hydrology, climate variability and change, ecology, forestry, glaciology, agriculture, environmental pollution, and other topics related to economy and society as they are affected by atmospheric hazards.
期刊最新文献
Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada Development of a CFD model to simulate the dispersion of atmospheric NH3 in a semi-open barn Using a hybrid approach for wind power forecasting in Northwestern Mexico Threats to tropical wetlands: Medio Queso Wetland as a case of degraded system Performance evaluation of the WRF model under different physical schemes for air quality purposes in Buenos Aires, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1