{"title":"A novel automated image analysis method for counting the population of whiteflies on leaves of crops","authors":"S. Ghods, Vahhab Shojaeddini","doi":"10.18869/MODARES.JCP.5.1.59","DOIUrl":null,"url":null,"abstract":"Counting the population of insect pests is a key task for planning a successful integrated pest management program. Most image processing and machine vision techniques in the literature are very site-specific and cannot be easily re-usable because their performances are highly related to their ground truth data. In this article a new unsupervised image processing method is proposed which is general and easy to use for non-experts. In this method firstly a hypothesis framework is defined to distinguish pests from other particles in a captured image after texture, color and shape analyses. Then, the decision about each hypothesis is made by estimating a distribution function for sizes of particles which are presented in the image. Performance of the proposed method is evaluated on real captured images that belong to plants in green houses and farms with low and high densities of whiteflies. The obtained results show the greater ability of the proposed method in counting whiteflies on crop leaves compared to adaptive thresholding and K-means algorithms. Furthermore it is shown that better counting of the pest by proposed algorithm not only doesn't lead to extracting more false objects but also it decreases the rate of false detections compared to the results of the alternative algorithms.","PeriodicalId":15396,"journal":{"name":"Journal of Crop Protection","volume":"5 1","pages":"59-73"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crop Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/MODARES.JCP.5.1.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 5
Abstract
Counting the population of insect pests is a key task for planning a successful integrated pest management program. Most image processing and machine vision techniques in the literature are very site-specific and cannot be easily re-usable because their performances are highly related to their ground truth data. In this article a new unsupervised image processing method is proposed which is general and easy to use for non-experts. In this method firstly a hypothesis framework is defined to distinguish pests from other particles in a captured image after texture, color and shape analyses. Then, the decision about each hypothesis is made by estimating a distribution function for sizes of particles which are presented in the image. Performance of the proposed method is evaluated on real captured images that belong to plants in green houses and farms with low and high densities of whiteflies. The obtained results show the greater ability of the proposed method in counting whiteflies on crop leaves compared to adaptive thresholding and K-means algorithms. Furthermore it is shown that better counting of the pest by proposed algorithm not only doesn't lead to extracting more false objects but also it decreases the rate of false detections compared to the results of the alternative algorithms.
期刊介绍:
Journal of Crop Protection is one of the TMU Press journals that is published by the responsibility of its Editor-in-Chief and Editorial Board in the determined scopes. Journal of Crop Protection (JCP) is an international peer-reviewed research journal published quarterly for the purpose of advancing the scientific studies. It covers fundamental and applied aspects of plant pathology and entomology in agriculture and natural resources. The journal will consider submissions from all over the world, on research works not being published or submitted for publication as full paper, review article and research note elsewhere. The Papers are published in English with an extra abstract in Farsi language.