Time-Varying Magnetic Field to Enhance the Navigation of Magnetic Microparticles in a Bifurcated Channel

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-01-27 DOI:10.1109/LMAG.2022.3146846
Pralay Chakrabarty;Roy P. Paily
{"title":"Time-Varying Magnetic Field to Enhance the Navigation of Magnetic Microparticles in a Bifurcated Channel","authors":"Pralay Chakrabarty;Roy P. Paily","doi":"10.1109/LMAG.2022.3146846","DOIUrl":null,"url":null,"abstract":"This letter investigates the navigation of magnetic microparticles (MMPs) in a Y-shaped microfluidic channel under the influence of an external magnetic field. The external magnetic field exerts a magnetic force on the magnetizable MMPs to steer them from the bifurcation point to the desired channel. During this process, some MMPs aggregate and stick to the channel walls, thus reducing the efficacy of the navigation process. To mitigate this problem, a time-varying magnetic field (TVMF) is applied for efficient navigation of the MMPs in the channel. The TVMF alternately switches between two modes of operation described as follows. In the first mode of operation, the TVMF is applied for a certain time duration to generate the magnetic force required for steering the MMPs to the desired outlet. The second mode of operation facilitates mitigation of the stiction and aggregation of MMPs by modulating the TVMF and time duration of operation, so as to yield a lower magnetic force in the reverse direction to that in the first mode. Extensive simulations are performed to analyze the switching time for effective steering of the MMPs using COMSOL Multiphysics. Results illustrate that the time duration between the two modes of operation should be set using a ratio of 3\n<inline-formula><tex-math>$:$</tex-math></inline-formula>\n1 for effective guidance of the MMPs to the correct outlet.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/9695181/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This letter investigates the navigation of magnetic microparticles (MMPs) in a Y-shaped microfluidic channel under the influence of an external magnetic field. The external magnetic field exerts a magnetic force on the magnetizable MMPs to steer them from the bifurcation point to the desired channel. During this process, some MMPs aggregate and stick to the channel walls, thus reducing the efficacy of the navigation process. To mitigate this problem, a time-varying magnetic field (TVMF) is applied for efficient navigation of the MMPs in the channel. The TVMF alternately switches between two modes of operation described as follows. In the first mode of operation, the TVMF is applied for a certain time duration to generate the magnetic force required for steering the MMPs to the desired outlet. The second mode of operation facilitates mitigation of the stiction and aggregation of MMPs by modulating the TVMF and time duration of operation, so as to yield a lower magnetic force in the reverse direction to that in the first mode. Extensive simulations are performed to analyze the switching time for effective steering of the MMPs using COMSOL Multiphysics. Results illustrate that the time duration between the two modes of operation should be set using a ratio of 3 $:$ 1 for effective guidance of the MMPs to the correct outlet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时变磁场增强磁性微粒在分叉通道中的导航
这封信研究了磁性微粒(MMPs)在外部磁场影响下在Y形微流体通道中的导航。外部磁场在可磁化MMP上施加磁力,将其从分叉点引导到所需通道。在这个过程中,一些MMP聚集并粘附在通道壁上,从而降低了导航过程的效率。为了缓解这个问题,时变磁场(TVMF)被应用于信道中MMP的有效导航。TVMF在两种操作模式之间交替切换,如下所述。在第一种操作模式中,TVMF被施加一定的持续时间,以产生将MMP转向所需出口所需的磁力。第二种操作模式通过调节TVMF和操作持续时间来促进MMP的静摩擦和聚集的减轻,从而在与第一种模式相反的方向上产生较低的磁力。使用COMSOL Multiphysics进行了广泛的模拟,以分析MMP有效操纵的切换时间。结果表明,两种操作模式之间的持续时间应使用3$:$1的比率设置,以有效引导MMP到达正确的出口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1