首页 > 最新文献

IEEE Magnetics Letters最新文献

英文 中文
Spintronic Neuron Using a Magnetic Tunnel Junction for Low-Power Neuromorphic Computing 利用磁隧道结的自旋电子神经元实现低功耗神经形态计算
IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-24 DOI: 10.1109/LMAG.2024.3484957
Steven Louis;Hannah Bradley;Cody Trevillian;Andrei Slavin;Vasyl Tyberkevych
This letter presents a novel spiking artificial neuron design based on a combined spin valve/magnetic tunnel junction (SV/MTJ). Traditional hardware used in artificial intelligence and machine learning faces significant challenges related to high power consumption and scalability. To address these challenges, spintronic neurons, which can mimic biologically inspired neural behaviors, offer a promising solution. We present a model of an SV/MTJ-based neuron that uses technologies that have been successfully integrated with CMOS in commercially available applications. The operational dynamics of the neuron are derived analytically through the Landau–Lifshitz-Gilbert–Slonczewski equation, demonstrating its ability to replicate key spiking characteristics of biological neurons such as response latency and refractive behavior. Simulation results indicate that the proposed neuron design can operate on a timescale of about 1 ns, without any bias current and with power consumption as low as 50 ${mu }$W.
这封信介绍了一种基于组合自旋阀/磁隧道结(SV/MTJ)的新型尖峰人工神经元设计。用于人工智能和机器学习的传统硬件面临着与高功耗和可扩展性有关的重大挑战。为了应对这些挑战,自旋电子神经元提供了一种很有前景的解决方案,它可以模仿受生物启发的神经行为。我们介绍了一个基于 SV/MTJ 的神经元模型,该模型采用的技术已在商业应用中成功与 CMOS 集成。我们通过 Landau-Lifshitz-Gilbert-Slonczewski 方程分析推导出神经元的运行动力学,证明它有能力复制生物神经元的关键尖峰特性,如响应延迟和折射行为。仿真结果表明,所提出的神经元设计可以在约 1 ns 的时间尺度上运行,无需任何偏置电流,功耗低至 50 ${mu }$W。
{"title":"Spintronic Neuron Using a Magnetic Tunnel Junction for Low-Power Neuromorphic Computing","authors":"Steven Louis;Hannah Bradley;Cody Trevillian;Andrei Slavin;Vasyl Tyberkevych","doi":"10.1109/LMAG.2024.3484957","DOIUrl":"https://doi.org/10.1109/LMAG.2024.3484957","url":null,"abstract":"This letter presents a novel spiking artificial neuron design based on a combined spin valve/magnetic tunnel junction (SV/MTJ). Traditional hardware used in artificial intelligence and machine learning faces significant challenges related to high power consumption and scalability. To address these challenges, spintronic neurons, which can mimic biologically inspired neural behaviors, offer a promising solution. We present a model of an SV/MTJ-based neuron that uses technologies that have been successfully integrated with CMOS in commercially available applications. The operational dynamics of the neuron are derived analytically through the Landau–Lifshitz-Gilbert–Slonczewski equation, demonstrating its ability to replicate key spiking characteristics of biological neurons such as response latency and refractive behavior. Simulation results indicate that the proposed neuron design can operate on a timescale of about 1 ns, without any bias current and with power consumption as low as 50 \u0000<inline-formula><tex-math>${mu }$</tex-math></inline-formula>\u0000W.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biaxially Stretchable Spin Valves With Stable Magnetic Sensing Performance 具有稳定磁感应性能的双轴可拉伸旋转阀
IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-17 DOI: 10.1109/LMAG.2024.3483069
Mengting Zou;Xilai Bao;Xinze Li;Yali Xie;Huali Yang;Lili Pan;Xiaojian Zhu;Run-Wei Li
Spin valves have received significant attention in the realm of flexible magnetic materials and devices due to their advantages of rapid response and high integration. Despite these benefits, the practical application of spin valves in wearable devices is constrained by their low stretchability and strain stability under tensile strain. Here, by designing spin valves with zigzag-wrinkled structure, we demonstrated that the magnetotransport properties of our spin valves remained unaffected under 25% biaxial tensile strain, revealing stretchability and strain stability. These outstanding performances are related to the zigzag-wrinkled structure generated after releasing the biaxial prestrain in polymer polydimethylsiloxane substrates. The flattening of the zigzag wrinkles under the biaxial tensile strain releases the direct effect of strain on the metal multilayers, thereby maintaining sensing performances upon stretching. This innovative design paves the way for the development of robust, flexible magnetic devices suitable for wearable technology.
自旋阀因其快速响应和高集成度的优势,在柔性磁性材料和器件领域受到了广泛关注。尽管有这些优点,但自旋阀在可穿戴设备中的实际应用却受到其低拉伸性和拉伸应变稳定性的限制。在这里,我们通过设计具有人字形皱纹结构的自旋阀,证明了自旋阀在 25% 双轴拉伸应变下的磁传输特性不受影响,从而揭示了其拉伸性和应变稳定性。这些出色的性能与聚合物聚二甲基硅氧烷基底释放双轴预应变后产生的人字形皱纹结构有关。人字形皱纹在双轴拉伸应变下变平,释放了应变对金属多层膜的直接影响,从而在拉伸时保持传感性能。这种创新设计为开发适用于可穿戴技术的坚固灵活的磁性器件铺平了道路。
{"title":"Biaxially Stretchable Spin Valves With Stable Magnetic Sensing Performance","authors":"Mengting Zou;Xilai Bao;Xinze Li;Yali Xie;Huali Yang;Lili Pan;Xiaojian Zhu;Run-Wei Li","doi":"10.1109/LMAG.2024.3483069","DOIUrl":"https://doi.org/10.1109/LMAG.2024.3483069","url":null,"abstract":"Spin valves have received significant attention in the realm of flexible magnetic materials and devices due to their advantages of rapid response and high integration. Despite these benefits, the practical application of spin valves in wearable devices is constrained by their low stretchability and strain stability under tensile strain. Here, by designing spin valves with zigzag-wrinkled structure, we demonstrated that the magnetotransport properties of our spin valves remained unaffected under 25% biaxial tensile strain, revealing stretchability and strain stability. These outstanding performances are related to the zigzag-wrinkled structure generated after releasing the biaxial prestrain in polymer polydimethylsiloxane substrates. The flattening of the zigzag wrinkles under the biaxial tensile strain releases the direct effect of strain on the metal multilayers, thereby maintaining sensing performances upon stretching. This innovative design paves the way for the development of robust, flexible magnetic devices suitable for wearable technology.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mössbauer and Density Functional Studies of Ferrimagnetic Fe3Se4 铁磁性 Fe3Se4 的摩斯鲍尔和密度函数研究
IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-14 DOI: 10.1109/LMAG.2024.3479924
Yang-Ki Hong;Jihoon Park;Hang Nam Ok;Minyeong Choi;Md Abdul Wahed;Myung-Hwa Jung;Chang-Dong Yeo
Monoclinic Fe3Se4 was synthesized using a ceramic method. Mössbauer spectroscopy and density functional theory were used to investigate the physical origins of its ferrimagnetism and high coercivity. At 78 K, 12 Mössbauer absorption lines were observed. These lines are composed of two subspectra, A and B, corresponding to Fe atoms at the 2a and 4i sites, respectively. At 320 K, the Mössbauer spectrum collapsed, indicating a transition from a ferrimagnetic to a paramagnetic state. This temperature is close to the Curie temperature (TC) of 331 or 315 K reported in the literature. The analysis of local structural symmetry confirmed that the Fe atoms in the 2a sites are more symmetrically coordinated with neighboring Se atoms than those in the 4i sites. Therefore, the Fe atoms in the 2a sites exhibit a higher hyperfine magnetic field (HMF) of 225 kOe and a weaker quadrupole splitting (QS) of 0.17 mm/s than the Fe atoms in the 4i sites, which exhibit an HMF of 105 kOe and a QS of 0.55 mm/s. Our density functional study confirmed that Fe3Se4 exhibits ferrimagnetic behavior, with a magnetic moment of 4.48 µB/u.c. and a TC of 354 K. Fe3Se4 shows a high magnetocrystalline anisotropy constant (Ku) of 0.9 × 106 erg/cm3. This high Ku value is attributed to the Fe atoms at the 4i sites. It is suggested that the high coercivity of Fe3Se4, as reported in the literature, is due to the distorted 4i site, which experiences the Jahn–Teller effect.
采用陶瓷法合成了单斜Fe3Se4。研究人员利用莫斯鲍尔光谱学和密度泛函理论研究了其铁磁性和高矫顽力的物理根源。在 78 K 时,观察到 12 条莫斯鲍尔吸收线。这些线由两个子谱 A 和 B 组成,分别对应于 2a 和 4i 位点上的铁原子。在 320 K 时,莫斯鲍尔光谱坍缩,表明铁磁态向顺磁态过渡。这一温度接近文献报道的居里温度(TC)331 或 315 K。对局部结构对称性的分析证实,与 4i 位点的铁原子相比,2a 位点的铁原子与相邻 Se 原子的配位更对称。因此,2a 位点的铁原子比 4i 位点的铁原子表现出更高的超频磁场(HMF)(225 kOe)和更弱的四极分裂(QS)(0.17 mm/s),后者表现出 105 kOe 的 HMF 和 0.55 mm/s 的 QS。我们的密度泛函研究证实,Fe3Se4 具有铁磁性,磁矩为 4.48 µB/u.c.,TC 为 354 K。这一高 Ku 值归因于 4i 位点上的铁原子。根据文献报道,Fe3Se4 的高矫顽力是由于 4i 位点发生了扭曲,从而产生了贾恩-泰勒效应。
{"title":"Mössbauer and Density Functional Studies of Ferrimagnetic Fe3Se4","authors":"Yang-Ki Hong;Jihoon Park;Hang Nam Ok;Minyeong Choi;Md Abdul Wahed;Myung-Hwa Jung;Chang-Dong Yeo","doi":"10.1109/LMAG.2024.3479924","DOIUrl":"https://doi.org/10.1109/LMAG.2024.3479924","url":null,"abstract":"Monoclinic Fe\u0000<sub>3</sub>\u0000Se\u0000<sub>4</sub>\u0000 was synthesized using a ceramic method. Mössbauer spectroscopy and density functional theory were used to investigate the physical origins of its ferrimagnetism and high coercivity. At 78 K, 12 Mössbauer absorption lines were observed. These lines are composed of two subspectra, A and B, corresponding to Fe atoms at the 2\u0000<italic>a</i>\u0000 and 4\u0000<italic>i</i>\u0000 sites, respectively. At 320 K, the Mössbauer spectrum collapsed, indicating a transition from a ferrimagnetic to a paramagnetic state. This temperature is close to the Curie temperature (\u0000<italic>T</i>\u0000<sub>C</sub>\u0000) of 331 or 315 K reported in the literature. The analysis of local structural symmetry confirmed that the Fe atoms in the 2\u0000<italic>a</i>\u0000 sites are more symmetrically coordinated with neighboring Se atoms than those in the 4\u0000<italic>i</i>\u0000 sites. Therefore, the Fe atoms in the 2\u0000<italic>a</i>\u0000 sites exhibit a higher hyperfine magnetic field (HMF) of 225 kOe and a weaker quadrupole splitting (QS) of 0.17 mm/s than the Fe atoms in the 4\u0000<italic>i</i>\u0000 sites, which exhibit an HMF of 105 kOe and a QS of 0.55 mm/s. Our density functional study confirmed that Fe\u0000<sub>3</sub>\u0000Se\u0000<sub>4</sub>\u0000 exhibits ferrimagnetic behavior, with a magnetic moment of 4.48 µ\u0000<sub>B</sub>\u0000/u.c. and a \u0000<italic>T</i>\u0000<sub>C</sub>\u0000 of 354 K. Fe\u0000<sub>3</sub>\u0000Se\u0000<sub>4</sub>\u0000 shows a high magnetocrystalline anisotropy constant (\u0000<italic>K</i>\u0000<sub>u</sub>\u0000) of 0.9 × 10\u0000<sup>6</sup>\u0000 erg/cm\u0000<sup>3</sup>\u0000. This high \u0000<italic>K</i>\u0000<sub>u</sub>\u0000 value is attributed to the Fe atoms at the 4\u0000<italic>i</i>\u0000 sites. It is suggested that the high coercivity of Fe\u0000<sub>3</sub>\u0000Se\u0000<sub>4</sub>\u0000, as reported in the literature, is due to the distorted 4\u0000<italic>i</i>\u0000 site, which experiences the Jahn–Teller effect.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Shape Ellipticity on Dipole-Exchange Spin Waves in Ferromagnetic Nanorings 形状椭圆度对铁磁纳米环中偶极交换自旋波的作用
IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-13 DOI: 10.1109/LMAG.2024.3461575
Yassin Elmeligi;Bushra Hussain;Michael G. Cottam
The properties of the quantized spin-wave frequencies and the transition field between the two stable magnetization states (the low-field vortex state and the higher-field onion state) are studied for elliptical nanorings. The dependences of these quantities on the nanoring sizes and the degree of ellipticity are examined over a wide range of values for the applied magnetic field and its orientation. The novel effects introduced when the symmetry axes of the inner elliptical edges of the rings are rotated relative to those of the outer elliptical edge are also studied. To characterize these effects, our theory makes use of a Hamiltonian-based dipole-exchange methodology, adapted from that used to elucidate the spin-wave modes in circular nanorings. It is found that spin-wave frequencies and the behavior of the transition field(s) depend sensitively on the degree of ellipticity, the rotation angle of the inner elliptical edge with respect to the outer elliptical edge, and the direction of the applied field relative to the nanoring axes.
研究了椭圆形纳米环的量化自旋波频率和两种稳定磁化状态(低磁场涡旋态和高磁场洋葱态)之间的过渡磁场的特性。在应用磁场及其方向的广泛数值范围内,研究了这些量与纳米环尺寸和椭圆度的关系。此外,还研究了环的内椭圆边对称轴相对于外椭圆边对称轴旋转时产生的新效应。为了描述这些效应,我们的理论采用了基于哈密顿的偶极子交换方法,该方法改编自用于阐明圆纳米环中自旋波模式的方法。研究发现,自旋波频率和过渡场的行为敏感地取决于椭圆度、内椭圆边相对于外椭圆边的旋转角度以及相对于纳米环轴线的外加场方向。
{"title":"Role of Shape Ellipticity on Dipole-Exchange Spin Waves in Ferromagnetic Nanorings","authors":"Yassin Elmeligi;Bushra Hussain;Michael G. Cottam","doi":"10.1109/LMAG.2024.3461575","DOIUrl":"10.1109/LMAG.2024.3461575","url":null,"abstract":"The properties of the quantized spin-wave frequencies and the transition field between the two stable magnetization states (the low-field vortex state and the higher-field onion state) are studied for elliptical nanorings. The dependences of these quantities on the nanoring sizes and the degree of ellipticity are examined over a wide range of values for the applied magnetic field and its orientation. The novel effects introduced when the symmetry axes of the inner elliptical edges of the rings are rotated relative to those of the outer elliptical edge are also studied. To characterize these effects, our theory makes use of a Hamiltonian-based dipole-exchange methodology, adapted from that used to elucidate the spin-wave modes in circular nanorings. It is found that spin-wave frequencies and the behavior of the transition field(s) depend sensitively on the degree of ellipticity, the rotation angle of the inner elliptical edge with respect to the outer elliptical edge, and the direction of the applied field relative to the nanoring axes.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic and Dielectric Properties of CoFeB Multilayer Thin Films With Oxide Capping Layer 带氧化物封盖层的 CoFeB 多层薄膜的磁性和介电特性
IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-12 DOI: 10.1109/LMAG.2024.3459813
Yuting Liu;Sylvain Eimer;Jianyuan Zhao;Yiming Chen
Ferromagnetic multilayer thin films with oxide capping layer have potential applications in voltage-controlled magnetic devices. Here, we present the optimization of the magnetic and dielectric properties of CoFeB/MgO thin films with different capping layers (Ta, Al2O3, and HfO2). We find that the samples with oxide capping layers show a higher perpendicular magnetic anisotropy (PMA) than those with a Ta capping layer. Meanwhile, a high dielectric constant of 58 is obtained in samples capped with 30 nm of HfO2. This high dielectric constant is attributed to the formation of an oxygen vacancy-related capacitive double layer in the HfO2 film according to X-ray diffraction analyses and current–voltage measurements. Finally, we find that the optimal annealing temperature, which allows for both high PMA and dielectric constant, is between 250 °C and 290 °C. Our results could contribute to designing high-performance materials for controlling interfacial magnetic properties in novel spintronic devices.
带有氧化物覆盖层的铁磁多层薄膜在电压控制磁性器件中具有潜在的应用价值。在此,我们介绍了对具有不同覆盖层(Ta、Al2O3 和 HfO2)的 CoFeB/MgO 薄膜的磁性和介电性质的优化。我们发现,具有氧化物封盖层的样品比具有钽封盖层的样品显示出更高的垂直磁各向异性(PMA)。同时,用 30 nm 的 HfO2 覆层的样品获得了 58 的高介电常数。根据 X 射线衍射分析和电流电压测量,这一高介电常数归因于 HfO2 薄膜中形成了与氧空位相关的电容双层。最后,我们发现实现高 PMA 和介电常数的最佳退火温度介于 250 °C 和 290 °C 之间。我们的研究结果有助于设计高性能材料,以控制新型自旋电子器件的界面磁性能。
{"title":"Magnetic and Dielectric Properties of CoFeB Multilayer Thin Films With Oxide Capping Layer","authors":"Yuting Liu;Sylvain Eimer;Jianyuan Zhao;Yiming Chen","doi":"10.1109/LMAG.2024.3459813","DOIUrl":"10.1109/LMAG.2024.3459813","url":null,"abstract":"Ferromagnetic multilayer thin films with oxide capping layer have potential applications in voltage-controlled magnetic devices. Here, we present the optimization of the magnetic and dielectric properties of CoFeB/MgO thin films with different capping layers (Ta, Al\u0000<sub>2</sub>\u0000O\u0000<sub>3</sub>\u0000, and HfO\u0000<sub>2</sub>\u0000). We find that the samples with oxide capping layers show a higher perpendicular magnetic anisotropy (PMA) than those with a Ta capping layer. Meanwhile, a high dielectric constant of 58 is obtained in samples capped with 30 nm of HfO\u0000<sub>2</sub>\u0000. This high dielectric constant is attributed to the formation of an oxygen vacancy-related capacitive double layer in the HfO\u0000<sub>2</sub>\u0000 film according to X-ray diffraction analyses and current–voltage measurements. Finally, we find that the optimal annealing temperature, which allows for both high PMA and dielectric constant, is between 250 °C and 290 °C. Our results could contribute to designing high-performance materials for controlling interfacial magnetic properties in novel spintronic devices.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Powder Particle Surface Treatment on DC Magnetic Properties of Compacted Iron Cores 粉末颗粒表面处理对压制铁芯直流磁性能的影响
IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-26 DOI: 10.1109/LMAG.2024.3450334
Martin Tkáč;Peter Kollár;Robert Maciaszek;Samuel Dobák;Ján Füzer;Denisa Olekšáková;Radovan Bureš;Mária Fáberová
Soft magnetic iron finds practical use in many applications, such as electromagnets and relays. In order for these devices to work effectively, it is necessary to know their dc magnetic properties. Soft magnetic compacted powder cores possess lower permeability than powder particles from which they were prepared, due to the inner demagnetization factor caused by the existence of pores in the core structure. The aim of the work was to determine the effect of surface mechanical treatment of iron powder particles of two different size fractions, leading either to an increase in the demagnetization factor or to a positive effect on the dc magnetic properties of the resulting compacted cores. For samples prepared from smaller powder particles, we found, that despite the increase in inner demagnetization factor as a result of the smoothing procedure, the differential relative permeability increased, and total energy loss decreased.
软磁铁在许多应用中都有实际用途,例如电磁铁和继电器。为了使这些设备有效工作,有必要了解它们的直流磁性能。软磁压制粉芯的磁导率低于制备它们的粉末颗粒,这是由于粉芯结构中存在孔隙而导致的内部退磁因素。这项工作的目的是确定对两种不同尺寸的铁粉颗粒进行表面机械处理的效果,这种处理要么会导致退磁因子的增加,要么会对由此产生的压制磁芯的直流磁性能产生积极影响。对于用较小的粉末颗粒制备的样品,我们发现,尽管平滑程序导致内部退磁因子增加,但差分相对磁导率增加,总能量损失减少。
{"title":"Effect of Powder Particle Surface Treatment on DC Magnetic Properties of Compacted Iron Cores","authors":"Martin Tkáč;Peter Kollár;Robert Maciaszek;Samuel Dobák;Ján Füzer;Denisa Olekšáková;Radovan Bureš;Mária Fáberová","doi":"10.1109/LMAG.2024.3450334","DOIUrl":"10.1109/LMAG.2024.3450334","url":null,"abstract":"Soft magnetic iron finds practical use in many applications, such as electromagnets and relays. In order for these devices to work effectively, it is necessary to know their dc magnetic properties. Soft magnetic compacted powder cores possess lower permeability than powder particles from which they were prepared, due to the inner demagnetization factor caused by the existence of pores in the core structure. The aim of the work was to determine the effect of surface mechanical treatment of iron powder particles of two different size fractions, leading either to an increase in the demagnetization factor or to a positive effect on the dc magnetic properties of the resulting compacted cores. For samples prepared from smaller powder particles, we found, that despite the increase in inner demagnetization factor as a result of the smoothing procedure, the differential relative permeability increased, and total energy loss decreased.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10648613","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Structural and Magnetic Properties of Cu-Rich CuxMn3−xO4 Spinels for Advanced Magnetic Refrigeration at Liquid Nitrogen Temperatures 探索用于液氮温度下先进磁制冷的富铜 CuxMn3-xO4 Spinels 的结构和磁特性
IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-15 DOI: 10.1109/LMAG.2024.3443745
Abir Hadded;Igor Veremchuk;Shengqiang Zhou;Denys Makarov;Essebti Dhahri
Cu–Mn oxide spinels reveal notorious magnetocaloric performance at liquid nitrogen temperatures. We applied the soft chemistry sol–gel method to prepare CuxMn3−xO4 samples with nominal Cu content of x = 1, 1.5, 1.8, and 2. According to powder X-ray diffraction studies, we succeeded to fabricate multiphase samples with a high content of Cu in spinel phases. We provide insights into the structural and magnetic, as well as magnetocaloric, properties of the synthesized samples. We determine that in contrast to samples with x = 1.0 and 1.5, which are coupled ferromagnetically, the samples with x = 1.8 and 2.0 reveal ferrimagnetic coupling. The transition temperature is found to decrease only slightly from 78 K (x = 1) to 75 K (x = 2). The maximum values of the magnetic entropy change and relative cooling power are determined for each compound and found to be the largest for the sample with x = 1.0 due to its largest magnetization. Independent of the Cu content, here, the studied samples reveal a relative cooling power of larger than 139 J/kg, which highlights the relevance of these materials for magnetic refrigeration applications, particularly at liquid nitrogen temperatures.
铜锰氧化物尖晶石在液氮温度下具有显著的磁致性能。我们采用软化学溶胶-凝胶法制备了标称铜含量为 x = 1、1.5、1.8 和 2 的 CuxMn3-xO4 样品。根据粉末 X 射线衍射研究,我们成功制备出了尖晶石相中铜含量较高的多相样品。我们深入了解了合成样品的结构、磁性和磁致性。我们发现,与 x = 1.0 和 1.5 的铁磁耦合样品不同,x = 1.8 和 2.0 的样品具有铁磁耦合。过渡温度仅从 78 K(x = 1)略微下降到 75 K(x = 2)。确定了每种化合物的磁熵变化和相对冷却功率的最大值,发现 x = 1.0 的样品由于磁化最大而磁熵变化和相对冷却功率最大。与铜含量无关,所研究的样品显示出大于 139 J/kg 的相对冷却功率,这凸显了这些材料在磁制冷应用中的相关性,尤其是在液氮温度下。
{"title":"Exploring the Structural and Magnetic Properties of Cu-Rich CuxMn3−xO4 Spinels for Advanced Magnetic Refrigeration at Liquid Nitrogen Temperatures","authors":"Abir Hadded;Igor Veremchuk;Shengqiang Zhou;Denys Makarov;Essebti Dhahri","doi":"10.1109/LMAG.2024.3443745","DOIUrl":"https://doi.org/10.1109/LMAG.2024.3443745","url":null,"abstract":"Cu–Mn oxide spinels reveal notorious magnetocaloric performance at liquid nitrogen temperatures. We applied the soft chemistry sol–gel method to prepare Cu\u0000<italic><sub>x</sub></i>\u0000Mn\u0000<sub>3−</sub>\u0000<italic><sub>x</sub></i>\u0000O\u0000<sub>4</sub>\u0000 samples with nominal Cu content of \u0000<italic>x</i>\u0000 = 1, 1.5, 1.8, and 2. According to powder X-ray diffraction studies, we succeeded to fabricate multiphase samples with a high content of Cu in spinel phases. We provide insights into the structural and magnetic, as well as magnetocaloric, properties of the synthesized samples. We determine that in contrast to samples with \u0000<italic>x</i>\u0000 = 1.0 and 1.5, which are coupled ferromagnetically, the samples with \u0000<italic>x</i>\u0000 = 1.8 and 2.0 reveal ferrimagnetic coupling. The transition temperature is found to decrease only slightly from 78 K (\u0000<italic>x</i>\u0000 = 1) to 75 K (\u0000<italic>x</i>\u0000 = 2). The maximum values of the magnetic entropy change and relative cooling power are determined for each compound and found to be the largest for the sample with \u0000<italic>x</i>\u0000 = 1.0 due to its largest magnetization. Independent of the Cu content, here, the studied samples reveal a relative cooling power of larger than 139 J/kg, which highlights the relevance of these materials for magnetic refrigeration applications, particularly at liquid nitrogen temperatures.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Variable Stiffness Methodology to Extend Travel Range of Micro Electromagnetic Actuators 扩展微型电磁致动器行程范围的可变刚度方法
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-13 DOI: 10.1109/lmag.2024.3442710
Xian Shi, Changda Yang, Kerong Cai, Xu Wang, Yinghu Liu, Zekai Zhang, Feng Yu, Biao Ji, Guangwei Meng
{"title":"A Variable Stiffness Methodology to Extend Travel Range of Micro Electromagnetic Actuators","authors":"Xian Shi, Changda Yang, Kerong Cai, Xu Wang, Yinghu Liu, Zekai Zhang, Feng Yu, Biao Ji, Guangwei Meng","doi":"10.1109/lmag.2024.3442710","DOIUrl":"https://doi.org/10.1109/lmag.2024.3442710","url":null,"abstract":"","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Off-Axis External Magnetic Field Perturbation on the Write Error Slopes of Perpendicular STT-RAM Cell: Micromagnetic Study 离轴外部磁场扰动对垂直 STT-RAM 单元写入误差斜率的影响:微磁研究
IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-18 DOI: 10.1109/LMAG.2024.3430189
Susheel K. Arya;Sonalie Ahirwar;Tanmoy Pramanik
External magnetic field perturbation remains a key reliability issue for spin-transfer-torque magnetic random-access memory. Although several prototypes have been demonstrated already, the effects of external fields with varying directions are not well reported. Our macrospin-based study revealed a significant increase in write failures in the presence of small off-axis external magnetic fields. However, incoherent switching pathways, which are also known to impact the switching process, cannot be captured by a macrospin model. Here, we report the micromagnetic model study of the switching process of perpendicular nanomagnets in the presence of magnetic fields of varying magnitudes and directions. The results are consistent with the macrospin model prediction for smaller magnet sizes. For larger magnet sizes, the impact of the off-axis external magnetic field becomes much worse when incoherent magnetization modes dominate the switching process.
外部磁场扰动仍然是自旋转移力矩磁随机存取存储器的一个关键可靠性问题。虽然已经展示了几个原型,但关于不同方向的外部磁场的影响还没有很好的报道。我们基于宏旋的研究表明,在小的离轴外场存在时,写入失败率会显著增加。然而,不连贯的开关路径也会影响开关过程,但宏旋模型却无法捕捉到这些影响。在此,我们报告了垂直纳米磁体在不同大小和方向的磁场下开关过程的微磁模型研究。对于较小尺寸的磁体,研究结果与宏旋模型的预测一致。对于较大尺寸的磁体,当不连贯磁化模式主导开关过程时,离轴外部磁场的影响会变得更加严重。
{"title":"Impact of Off-Axis External Magnetic Field Perturbation on the Write Error Slopes of Perpendicular STT-RAM Cell: Micromagnetic Study","authors":"Susheel K. Arya;Sonalie Ahirwar;Tanmoy Pramanik","doi":"10.1109/LMAG.2024.3430189","DOIUrl":"10.1109/LMAG.2024.3430189","url":null,"abstract":"External magnetic field perturbation remains a key reliability issue for spin-transfer-torque magnetic random-access memory. Although several prototypes have been demonstrated already, the effects of external fields with varying directions are not well reported. Our macrospin-based study revealed a significant increase in write failures in the presence of small off-axis external magnetic fields. However, incoherent switching pathways, which are also known to impact the switching process, cannot be captured by a macrospin model. Here, we report the micromagnetic model study of the switching process of perpendicular nanomagnets in the presence of magnetic fields of varying magnitudes and directions. The results are consistent with the macrospin model prediction for smaller magnet sizes. For larger magnet sizes, the impact of the off-axis external magnetic field becomes much worse when incoherent magnetization modes dominate the switching process.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One Trillion True Random Bits Generated With a Field-Programmable Gate Array Actuated Magnetic Tunnel Junction 利用场可编程门阵列驱动磁隧道结生成一万亿真实随机比特
IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-18 DOI: 10.1109/LMAG.2024.3416091
Andre Dubovskiy;Troy Criss;Ahmed Sidi El Valli;Laura Rehm;Andrew D. Kent;Andrew Haas
Large quantities of random numbers are crucial in a wide range of applications. We have recently demonstrated that perpendicular nanopillar magnetic tunnel junctions (pMTJs) can produce true random bits when actuated with short pulses. However, our implementation used high-end and expensive electronics, such as a high-bandwidth arbitrary waveform generator and analog-to-digital converter, and was limited to relatively low data rates. Here, we significantly increase the speed of true random-number generation of our stochastic actuated pMTJs (SMART-pMTJs) using field-programmable gate arrays (FPGAs), demonstrating the generation of over ${text{10}}^{text{12}}$ bits at rates exceeding 10 Mb/s. The resulting bitstreams pass the NIST Statistical Test Suite for randomness with only one xor operation. In addition to a hundred-fold reduction in the setup cost and a thousand-fold increase in bitrate, the advancement includes simplifying and optimizing random bit generation with a custom-designed analog daughterboard to interface an FPGA and SMART-pMTJ. The resulting setup further enables FPGA at-speed processing of MTJ data for stochastic modeling and cryptography.
大量随机数在广泛的应用中至关重要。我们最近证明,垂直纳米柱磁隧道结(pMTJ)在短脉冲驱动下可以产生真正的随机比特。然而,我们的实现使用了高端且昂贵的电子设备,如高带宽任意波形发生器和模数转换器,而且仅限于相对较低的数据传输速率。在这里,我们利用现场可编程门阵列(FPGA)大幅提高了随机致动 pMTJ(SMART-pMTJ)的真正随机数生成速度,证明了在超过 10 Mb/s 的速率下可生成超过 ${text{10}}^{text{12}}$ 的比特。生成的比特流通过了 NIST 随机性统计测试套件,只需进行一次 xor 操作。除了设置成本降低百倍、比特率提高千倍之外,该技术的进步还包括利用定制设计的模拟子板简化和优化随机比特生成,以连接 FPGA 和 SMART-pMTJ。由此产生的设置进一步实现了 FPGA 对 MTJ 数据的高速处理,用于随机建模和密码学。
{"title":"One Trillion True Random Bits Generated With a Field-Programmable Gate Array Actuated Magnetic Tunnel Junction","authors":"Andre Dubovskiy;Troy Criss;Ahmed Sidi El Valli;Laura Rehm;Andrew D. Kent;Andrew Haas","doi":"10.1109/LMAG.2024.3416091","DOIUrl":"10.1109/LMAG.2024.3416091","url":null,"abstract":"Large quantities of random numbers are crucial in a wide range of applications. We have recently demonstrated that perpendicular nanopillar magnetic tunnel junctions (pMTJs) can produce true random bits when actuated with short pulses. However, our implementation used high-end and expensive electronics, such as a high-bandwidth arbitrary waveform generator and analog-to-digital converter, and was limited to relatively low data rates. Here, we significantly increase the speed of true random-number generation of our stochastic actuated pMTJs (SMART-pMTJs) using field-programmable gate arrays (FPGAs), demonstrating the generation of over \u0000<inline-formula><tex-math>${text{10}}^{text{12}}$</tex-math></inline-formula>\u0000 bits at rates exceeding 10 Mb/s. The resulting bitstreams pass the NIST Statistical Test Suite for randomness with only one \u0000<sc>xor</small>\u0000 operation. In addition to a hundred-fold reduction in the setup cost and a thousand-fold increase in bitrate, the advancement includes simplifying and optimizing random bit generation with a custom-designed analog daughterboard to interface an FPGA and SMART-pMTJ. The resulting setup further enables FPGA at-speed processing of MTJ data for stochastic modeling and cryptography.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-4"},"PeriodicalIF":1.1,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561576","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Magnetics Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1