首页 > 最新文献

IEEE Magnetics Letters最新文献

英文 中文
Role of Shape Ellipticity on Dipole-exchange Spin Waves in Ferromagnetic Nanorings 形状椭圆度对铁磁纳米环中偶极交换自旋波的作用
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-13 DOI: 10.1109/lmag.2024.3461575
Yassin Elmeligi, Bushra Hussain, Michael G. Cottam
{"title":"Role of Shape Ellipticity on Dipole-exchange Spin Waves in Ferromagnetic Nanorings","authors":"Yassin Elmeligi, Bushra Hussain, Michael G. Cottam","doi":"10.1109/lmag.2024.3461575","DOIUrl":"https://doi.org/10.1109/lmag.2024.3461575","url":null,"abstract":"","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic and dielectric properties of CoFeB multi-layer thin films with oxide capping layer 带氧化物封盖层的 CoFeB 多层薄膜的磁性和介电特性
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-12 DOI: 10.1109/lmag.2024.3459813
Yuting Liu, Sylvain Eimer, Jianyuan Zhao, Yiming Chen
{"title":"Magnetic and dielectric properties of CoFeB multi-layer thin films with oxide capping layer","authors":"Yuting Liu, Sylvain Eimer, Jianyuan Zhao, Yiming Chen","doi":"10.1109/lmag.2024.3459813","DOIUrl":"https://doi.org/10.1109/lmag.2024.3459813","url":null,"abstract":"","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Powder Particle Surface Treatment on DC Magnetic Properties of Compacted Iron Cores 粉末颗粒表面处理对压制铁芯直流磁性能的影响
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-26 DOI: 10.1109/lmag.2024.3450334
Martin Tkáč, Peter Kollár, Robert Maciaszek, Samuel Dobák, Ján Füzer, Denisa Olekšáková, Radovan Bureš, Mária Fáberová
{"title":"Effect of Powder Particle Surface Treatment on DC Magnetic Properties of Compacted Iron Cores","authors":"Martin Tkáč, Peter Kollár, Robert Maciaszek, Samuel Dobák, Ján Füzer, Denisa Olekšáková, Radovan Bureš, Mária Fáberová","doi":"10.1109/lmag.2024.3450334","DOIUrl":"https://doi.org/10.1109/lmag.2024.3450334","url":null,"abstract":"","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Structural and Magnetic Properties of Cu-Rich CuxMn3−xO4 Spinels for Advanced Magnetic Refrigeration at Liquid Nitrogen Temperatures 探索用于液氮温度下先进磁制冷的富铜 CuxMn3-xO4 Spinels 的结构和磁特性
IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-15 DOI: 10.1109/LMAG.2024.3443745
Abir Hadded;Igor Veremchuk;Shengqiang Zhou;Denys Makarov;Essebti Dhahri
Cu–Mn oxide spinels reveal notorious magnetocaloric performance at liquid nitrogen temperatures. We applied the soft chemistry sol–gel method to prepare CuxMn3−xO4 samples with nominal Cu content of x = 1, 1.5, 1.8, and 2. According to powder X-ray diffraction studies, we succeeded to fabricate multiphase samples with a high content of Cu in spinel phases. We provide insights into the structural and magnetic, as well as magnetocaloric, properties of the synthesized samples. We determine that in contrast to samples with x = 1.0 and 1.5, which are coupled ferromagnetically, the samples with x = 1.8 and 2.0 reveal ferrimagnetic coupling. The transition temperature is found to decrease only slightly from 78 K (x = 1) to 75 K (x = 2). The maximum values of the magnetic entropy change and relative cooling power are determined for each compound and found to be the largest for the sample with x = 1.0 due to its largest magnetization. Independent of the Cu content, here, the studied samples reveal a relative cooling power of larger than 139 J/kg, which highlights the relevance of these materials for magnetic refrigeration applications, particularly at liquid nitrogen temperatures.
铜锰氧化物尖晶石在液氮温度下具有显著的磁致性能。我们采用软化学溶胶-凝胶法制备了标称铜含量为 x = 1、1.5、1.8 和 2 的 CuxMn3-xO4 样品。根据粉末 X 射线衍射研究,我们成功制备出了尖晶石相中铜含量较高的多相样品。我们深入了解了合成样品的结构、磁性和磁致性。我们发现,与 x = 1.0 和 1.5 的铁磁耦合样品不同,x = 1.8 和 2.0 的样品具有铁磁耦合。过渡温度仅从 78 K(x = 1)略微下降到 75 K(x = 2)。确定了每种化合物的磁熵变化和相对冷却功率的最大值,发现 x = 1.0 的样品由于磁化最大而磁熵变化和相对冷却功率最大。与铜含量无关,所研究的样品显示出大于 139 J/kg 的相对冷却功率,这凸显了这些材料在磁制冷应用中的相关性,尤其是在液氮温度下。
{"title":"Exploring the Structural and Magnetic Properties of Cu-Rich CuxMn3−xO4 Spinels for Advanced Magnetic Refrigeration at Liquid Nitrogen Temperatures","authors":"Abir Hadded;Igor Veremchuk;Shengqiang Zhou;Denys Makarov;Essebti Dhahri","doi":"10.1109/LMAG.2024.3443745","DOIUrl":"https://doi.org/10.1109/LMAG.2024.3443745","url":null,"abstract":"Cu–Mn oxide spinels reveal notorious magnetocaloric performance at liquid nitrogen temperatures. We applied the soft chemistry sol–gel method to prepare Cu\u0000<italic><sub>x</sub></i>\u0000Mn\u0000<sub>3−</sub>\u0000<italic><sub>x</sub></i>\u0000O\u0000<sub>4</sub>\u0000 samples with nominal Cu content of \u0000<italic>x</i>\u0000 = 1, 1.5, 1.8, and 2. According to powder X-ray diffraction studies, we succeeded to fabricate multiphase samples with a high content of Cu in spinel phases. We provide insights into the structural and magnetic, as well as magnetocaloric, properties of the synthesized samples. We determine that in contrast to samples with \u0000<italic>x</i>\u0000 = 1.0 and 1.5, which are coupled ferromagnetically, the samples with \u0000<italic>x</i>\u0000 = 1.8 and 2.0 reveal ferrimagnetic coupling. The transition temperature is found to decrease only slightly from 78 K (\u0000<italic>x</i>\u0000 = 1) to 75 K (\u0000<italic>x</i>\u0000 = 2). The maximum values of the magnetic entropy change and relative cooling power are determined for each compound and found to be the largest for the sample with \u0000<italic>x</i>\u0000 = 1.0 due to its largest magnetization. Independent of the Cu content, here, the studied samples reveal a relative cooling power of larger than 139 J/kg, which highlights the relevance of these materials for magnetic refrigeration applications, particularly at liquid nitrogen temperatures.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Variable Stiffness Methodology to Extend Travel Range of Micro Electromagnetic Actuators 扩展微型电磁致动器行程范围的可变刚度方法
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-13 DOI: 10.1109/lmag.2024.3442710
Xian Shi, Changda Yang, Kerong Cai, Xu Wang, Yinghu Liu, Zekai Zhang, Feng Yu, Biao Ji, Guangwei Meng
{"title":"A Variable Stiffness Methodology to Extend Travel Range of Micro Electromagnetic Actuators","authors":"Xian Shi, Changda Yang, Kerong Cai, Xu Wang, Yinghu Liu, Zekai Zhang, Feng Yu, Biao Ji, Guangwei Meng","doi":"10.1109/lmag.2024.3442710","DOIUrl":"https://doi.org/10.1109/lmag.2024.3442710","url":null,"abstract":"","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Off-Axis External Magnetic Field Perturbation on the Write Error Slopes of Perpendicular STT-RAM Cell: Micromagnetic Study 离轴外部磁场扰动对垂直 STT-RAM 单元写入误差斜率的影响:微磁研究
IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-18 DOI: 10.1109/LMAG.2024.3430189
Susheel K. Arya;Sonalie Ahirwar;Tanmoy Pramanik
External magnetic field perturbation remains a key reliability issue for spin-transfer-torque magnetic random-access memory. Although several prototypes have been demonstrated already, the effects of external fields with varying directions are not well reported. Our macrospin-based study revealed a significant increase in write failures in the presence of small off-axis external magnetic fields. However, incoherent switching pathways, which are also known to impact the switching process, cannot be captured by a macrospin model. Here, we report the micromagnetic model study of the switching process of perpendicular nanomagnets in the presence of magnetic fields of varying magnitudes and directions. The results are consistent with the macrospin model prediction for smaller magnet sizes. For larger magnet sizes, the impact of the off-axis external magnetic field becomes much worse when incoherent magnetization modes dominate the switching process.
外部磁场扰动仍然是自旋转移力矩磁随机存取存储器的一个关键可靠性问题。虽然已经展示了几个原型,但关于不同方向的外部磁场的影响还没有很好的报道。我们基于宏旋的研究表明,在小的离轴外场存在时,写入失败率会显著增加。然而,不连贯的开关路径也会影响开关过程,但宏旋模型却无法捕捉到这些影响。在此,我们报告了垂直纳米磁体在不同大小和方向的磁场下开关过程的微磁模型研究。对于较小尺寸的磁体,研究结果与宏旋模型的预测一致。对于较大尺寸的磁体,当不连贯磁化模式主导开关过程时,离轴外部磁场的影响会变得更加严重。
{"title":"Impact of Off-Axis External Magnetic Field Perturbation on the Write Error Slopes of Perpendicular STT-RAM Cell: Micromagnetic Study","authors":"Susheel K. Arya;Sonalie Ahirwar;Tanmoy Pramanik","doi":"10.1109/LMAG.2024.3430189","DOIUrl":"10.1109/LMAG.2024.3430189","url":null,"abstract":"External magnetic field perturbation remains a key reliability issue for spin-transfer-torque magnetic random-access memory. Although several prototypes have been demonstrated already, the effects of external fields with varying directions are not well reported. Our macrospin-based study revealed a significant increase in write failures in the presence of small off-axis external magnetic fields. However, incoherent switching pathways, which are also known to impact the switching process, cannot be captured by a macrospin model. Here, we report the micromagnetic model study of the switching process of perpendicular nanomagnets in the presence of magnetic fields of varying magnitudes and directions. The results are consistent with the macrospin model prediction for smaller magnet sizes. For larger magnet sizes, the impact of the off-axis external magnetic field becomes much worse when incoherent magnetization modes dominate the switching process.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One Trillion True Random Bits Generated With a Field-Programmable Gate Array Actuated Magnetic Tunnel Junction 利用场可编程门阵列驱动磁隧道结生成一万亿真实随机比特
IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-18 DOI: 10.1109/LMAG.2024.3416091
Andre Dubovskiy;Troy Criss;Ahmed Sidi El Valli;Laura Rehm;Andrew D. Kent;Andrew Haas
Large quantities of random numbers are crucial in a wide range of applications. We have recently demonstrated that perpendicular nanopillar magnetic tunnel junctions (pMTJs) can produce true random bits when actuated with short pulses. However, our implementation used high-end and expensive electronics, such as a high-bandwidth arbitrary waveform generator and analog-to-digital converter, and was limited to relatively low data rates. Here, we significantly increase the speed of true random-number generation of our stochastic actuated pMTJs (SMART-pMTJs) using field-programmable gate arrays (FPGAs), demonstrating the generation of over ${text{10}}^{text{12}}$ bits at rates exceeding 10 Mb/s. The resulting bitstreams pass the NIST Statistical Test Suite for randomness with only one xor operation. In addition to a hundred-fold reduction in the setup cost and a thousand-fold increase in bitrate, the advancement includes simplifying and optimizing random bit generation with a custom-designed analog daughterboard to interface an FPGA and SMART-pMTJ. The resulting setup further enables FPGA at-speed processing of MTJ data for stochastic modeling and cryptography.
大量随机数在广泛的应用中至关重要。我们最近证明,垂直纳米柱磁隧道结(pMTJ)在短脉冲驱动下可以产生真正的随机比特。然而,我们的实现使用了高端且昂贵的电子设备,如高带宽任意波形发生器和模数转换器,而且仅限于相对较低的数据传输速率。在这里,我们利用现场可编程门阵列(FPGA)大幅提高了随机致动 pMTJ(SMART-pMTJ)的真正随机数生成速度,证明了在超过 10 Mb/s 的速率下可生成超过 ${text{10}}^{text{12}}$ 的比特。生成的比特流通过了 NIST 随机性统计测试套件,只需进行一次 xor 操作。除了设置成本降低百倍、比特率提高千倍之外,该技术的进步还包括利用定制设计的模拟子板简化和优化随机比特生成,以连接 FPGA 和 SMART-pMTJ。由此产生的设置进一步实现了 FPGA 对 MTJ 数据的高速处理,用于随机建模和密码学。
{"title":"One Trillion True Random Bits Generated With a Field-Programmable Gate Array Actuated Magnetic Tunnel Junction","authors":"Andre Dubovskiy;Troy Criss;Ahmed Sidi El Valli;Laura Rehm;Andrew D. Kent;Andrew Haas","doi":"10.1109/LMAG.2024.3416091","DOIUrl":"10.1109/LMAG.2024.3416091","url":null,"abstract":"Large quantities of random numbers are crucial in a wide range of applications. We have recently demonstrated that perpendicular nanopillar magnetic tunnel junctions (pMTJs) can produce true random bits when actuated with short pulses. However, our implementation used high-end and expensive electronics, such as a high-bandwidth arbitrary waveform generator and analog-to-digital converter, and was limited to relatively low data rates. Here, we significantly increase the speed of true random-number generation of our stochastic actuated pMTJs (SMART-pMTJs) using field-programmable gate arrays (FPGAs), demonstrating the generation of over \u0000<inline-formula><tex-math>${text{10}}^{text{12}}$</tex-math></inline-formula>\u0000 bits at rates exceeding 10 Mb/s. The resulting bitstreams pass the NIST Statistical Test Suite for randomness with only one \u0000<sc>xor</small>\u0000 operation. In addition to a hundred-fold reduction in the setup cost and a thousand-fold increase in bitrate, the advancement includes simplifying and optimizing random bit generation with a custom-designed analog daughterboard to interface an FPGA and SMART-pMTJ. The resulting setup further enables FPGA at-speed processing of MTJ data for stochastic modeling and cryptography.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561576","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multiplexer-Based High-Capacity Spintronic Synapse 基于多路复用器的高容量自旋电子突触
IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-18 DOI: 10.1109/LMAG.2024.3416092
Mahan Rezaei;Ermia Elahi;Arefe Amirany;Mohammad Hossein Moaiyeri
In recent years, there have been significant advancements in the manufacturing of emerging technologies, especially in the areas of in-memory computing and neural networks, which are currently some of the most actively researched topics. With the increasing need to process complex tasks, the development of intelligent processors has become more crucial than ever. This letter advances a high-capacity spintronic synapse using magnetic tunnel junctions (MTJs) and carbon nanotube field-effect transistors (CNTFETs) to implement associative memory. The choice of MTJ devices is due to their remarkable features, including reliable reconfiguration and nonvolatility. Moreover, CNTFETs have overcome traditional complementary metal–oxide semiconductor limitations, such as the short-channel effect and suboptimal hole mobility. The design seeks to improve accuracy and memory capacity by increasing the number of weights. Simulation results indicate that the design offers a 19%–73% higher number of weights and a lower error rate than the state-of-the-art counterparts.
近年来,新兴技术的生产取得了重大进展,特别是在内存计算和神经网络领域,这些都是目前研究最为活跃的课题。随着处理复杂任务的需求与日俱增,智能处理器的开发变得比以往任何时候都更为重要。这封信利用磁隧道结(MTJ)和碳纳米管场效应晶体管(CNTFET)推进了大容量自旋电子突触,以实现关联记忆。之所以选择 MTJ 器件,是因为它们具有可靠的重新配置和非挥发性等显著特点。此外,CNTFET 克服了传统互补金属氧化物半导体的局限性,如短沟道效应和不理想的空穴迁移率。该设计旨在通过增加砝码数量来提高精度和内存容量。仿真结果表明,与最先进的同类产品相比,该设计的权重数增加了 19%-73% ,错误率更低。
{"title":"A Multiplexer-Based High-Capacity Spintronic Synapse","authors":"Mahan Rezaei;Ermia Elahi;Arefe Amirany;Mohammad Hossein Moaiyeri","doi":"10.1109/LMAG.2024.3416092","DOIUrl":"10.1109/LMAG.2024.3416092","url":null,"abstract":"In recent years, there have been significant advancements in the manufacturing of emerging technologies, especially in the areas of in-memory computing and neural networks, which are currently some of the most actively researched topics. With the increasing need to process complex tasks, the development of intelligent processors has become more crucial than ever. This letter advances a high-capacity spintronic synapse using magnetic tunnel junctions (MTJs) and carbon nanotube field-effect transistors (CNTFETs) to implement associative memory. The choice of MTJ devices is due to their remarkable features, including reliable reconfiguration and nonvolatility. Moreover, CNTFETs have overcome traditional complementary metal–oxide semiconductor limitations, such as the short-channel effect and suboptimal hole mobility. The design seeks to improve accuracy and memory capacity by increasing the number of weights. Simulation results indicate that the design offers a 19%–73% higher number of weights and a lower error rate than the state-of-the-art counterparts.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic and Microstructural Characterization of Carburized 25Cr35NiNb Alloy 渗碳 HP 合金的磁性和微观结构表征
IF 1.2 4区 物理与天体物理 Q3 Materials Science Pub Date : 2024-03-18 DOI: 10.1109/LMAG.2024.3376152
Shukai Chen;Minghao Zhang;Ke Huang;Genghao Jiao;Yihua Kang;Bo Feng
During the service of an HP tube, carbon diffuses into the tube wall, forming a carburization layer and reducing the mechanical strength. To quantitatively measure the carburization layer thickness, its magnetic properties should be accurately characterized. Magnetic properties, including saturation magnetization and magnetic permeability, of chromium-depleted HP alloy have been characterized by a vibration sample magnetometer and the eddy current method. The microstructural observations were made using optical microscopy and scanning electron microscopy. The change of the magnetic properties with chromium content has been quantitatively obtained. The results show that the saturated mass magnetization and magnetic permeability have abrupt increases when chromium content is less than 14.6% and 11.8%, respectively. The obtained properties were further used to quantitatively evaluate the carburization layer thickness in a slice of ex-serviced tube. The estimation error was less than 0.33 mm, indicating the characterized magnetic properties are effective for the carburization layer measurement.
HP 管在使用过程中,碳会扩散到管壁,形成渗碳层,降低机械强度。要定量测量渗碳层厚度,就必须准确表征其磁性能。我们采用振动样品磁力计和涡流法对贫铬 HP 合金的磁性能(包括饱和磁化和磁导率)进行了表征。使用光学显微镜和扫描电子显微镜对微观结构进行了观察。定量分析了磁性能随铬含量的变化。结果表明,当铬含量低于 14.6% 和 11.8% 时,饱和磁化率和磁导率会突然增加。获得的特性被进一步用于定量评估退役钢管切片的渗碳层厚度。估算误差小于 0.33 毫米,表明所表征的磁性能对渗碳层测量有效。
{"title":"Magnetic and Microstructural Characterization of Carburized 25Cr35NiNb Alloy","authors":"Shukai Chen;Minghao Zhang;Ke Huang;Genghao Jiao;Yihua Kang;Bo Feng","doi":"10.1109/LMAG.2024.3376152","DOIUrl":"10.1109/LMAG.2024.3376152","url":null,"abstract":"During the service of an HP tube, carbon diffuses into the tube wall, forming a carburization layer and reducing the mechanical strength. To quantitatively measure the carburization layer thickness, its magnetic properties should be accurately characterized. Magnetic properties, including saturation magnetization and magnetic permeability, of chromium-depleted HP alloy have been characterized by a vibration sample magnetometer and the eddy current method. The microstructural observations were made using optical microscopy and scanning electron microscopy. The change of the magnetic properties with chromium content has been quantitatively obtained. The results show that the saturated mass magnetization and magnetic permeability have abrupt increases when chromium content is less than 14.6% and 11.8%, respectively. The obtained properties were further used to quantitatively evaluate the carburization layer thickness in a slice of ex-serviced tube. The estimation error was less than 0.33 mm, indicating the characterized magnetic properties are effective for the carburization layer measurement.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140169211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complementary-Magnetization-Switching Perpendicular Spin-Orbit Torque Random-Access Memory Cell for High Read Performance 实现高读取性能的互补磁化开关垂直自旋轨道转矩随机存取存储器单元
IF 1.2 4区 物理与天体物理 Q3 Materials Science Pub Date : 2024-03-03 DOI: 10.1109/LMAG.2024.3396750
Hao Zhang;Di Wang;Long Liu;Yu Liu;Huai Lin;Yifan Zhang;Changqing Xie
The read reliability of spin-transfer torque magnetic random-access memory (STT-MRAM) is greatly hindered by a low sensing margin as a result of a small tunneling magnetoresistance ratio. Although the new generation of perpendicular anisotropy spin-orbit torque (SOT)-MRAM offers faster access speed and a longer lifetime than STT-MRAM, its read performance has not improved or even deteriorated because of the additional resistance of the SOT channel in the read path. In this letter, we propose two novel cell structures of SOT-MRAM that consist of one/two transistors, two diodes, and two magnetic tunnel junctions (1T2D2MTJ/2T2D2MTJ) on a shared U-shaped antiferromagnet layer, enabling a self-referencing scheme. Thanks to the bent current channel, the opposite direction of the SOT current below the free layers can one-step switch different data states in compatibility with the existing fabrication process of SOT-MRAM. Combined with the 28 nm tech node and Verilog-A MTJ compact model, the simulation results show that our MRAM cell significantly improves the sensing margin and bit error rate over the conventional two transistors and one MTJ (2T1M) cell, which is expected to become a high read performance solution.
自旋转移力矩磁性随机存取存储器(STT-MRAM)的读取可靠性因隧道磁阻比小而感应裕度低而大受影响。虽然新一代垂直各向异性自旋轨道力矩(SOT)-MRAM 比 STT-MRAM 具有更快的存取速度和更长的使用寿命,但由于 SOT 通道在读取路径中的附加电阻,其读取性能并未得到改善,甚至有所下降。在这封信中,我们提出了两种新型 SOT-MRAM 单元结构,它们由一个/两个晶体管、两个二极管和两个磁隧道结(1T2D2MTJ/2T2D2MTJ)组成,位于一个共享的 U 型反铁磁体层上,从而实现了自参照方案。得益于弯曲的电流通道,自由层下的 SOT 电流的相反方向可以一步切换不同的数据状态,与现有的 SOT-MRAM 制造工艺兼容。结合 28 纳米技术节点和 Verilog-A MTJ 紧凑型模型,仿真结果表明,与传统的两个晶体管和一个 MTJ(2T1M)单元相比,我们的 MRAM 单元显著提高了传感裕度和误码率,有望成为一种高读取性能解决方案。
{"title":"Complementary-Magnetization-Switching Perpendicular Spin-Orbit Torque Random-Access Memory Cell for High Read Performance","authors":"Hao Zhang;Di Wang;Long Liu;Yu Liu;Huai Lin;Yifan Zhang;Changqing Xie","doi":"10.1109/LMAG.2024.3396750","DOIUrl":"10.1109/LMAG.2024.3396750","url":null,"abstract":"The read reliability of spin-transfer torque magnetic random-access memory (STT-MRAM) is greatly hindered by a low sensing margin as a result of a small tunneling magnetoresistance ratio. Although the new generation of perpendicular anisotropy spin-orbit torque (SOT)-MRAM offers faster access speed and a longer lifetime than STT-MRAM, its read performance has not improved or even deteriorated because of the additional resistance of the SOT channel in the read path. In this letter, we propose two novel cell structures of SOT-MRAM that consist of one/two transistors, two diodes, and two magnetic tunnel junctions (1T2D2MTJ/2T2D2MTJ) on a shared U-shaped antiferromagnet layer, enabling a self-referencing scheme. Thanks to the bent current channel, the opposite direction of the SOT current below the free layers can one-step switch different data states in compatibility with the existing fabrication process of SOT-MRAM. Combined with the 28 nm tech node and Verilog-A MTJ compact model, the simulation results show that our MRAM cell significantly improves the sensing margin and bit error rate over the conventional two transistors and one MTJ (2T1M) cell, which is expected to become a high read performance solution.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140842453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Magnetics Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1