Miniaturized and Battery-Free Temperature and Humidity Sensor for Smart Pharmaceutical Packaging

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE journal of radio frequency identification Pub Date : 2023-09-15 DOI:10.1109/JRFID.2023.3312811
Adina B. Barba;Sara Amendola;Carolina Miozzi;Donato Masi;Garry Scrivens;Karen Gibson;Joel Basford;Cecilia Occhiuzzi;Gaetano Marrocco
{"title":"Miniaturized and Battery-Free Temperature and Humidity Sensor for Smart Pharmaceutical Packaging","authors":"Adina B. Barba;Sara Amendola;Carolina Miozzi;Donato Masi;Garry Scrivens;Karen Gibson;Joel Basford;Cecilia Occhiuzzi;Gaetano Marrocco","doi":"10.1109/JRFID.2023.3312811","DOIUrl":null,"url":null,"abstract":"Temperature and humidity levels inside pharmaceutical packaging can significantly affect the shelf life of the enclosed medications. The RFID technology in the UHF band is promising to address this issue as it permits to wirelessly monitor the inner environment at the item level. This work presents the design and experimental characterization of a miniaturized battery-less RFID sensor, able to simultaneously measure temperature and humidity. The proposed sensor includes a helical antenna and is compatible with the insertion into a capsule, similar to common drugs. A first prototype of the miniaturized sensor was realized and tested in terms of both communication and sensing performance. Despite variable boundary conditions, a reading distance greater than 40 cm was demonstrated. A realistic readability analysis under uncontrolled conditions estimated a probability of 65% to read the sensor from more than 20 cm. Furthermore, the humidity sensor performance was extensively characterized in a climate chamber through several tests, resulting in an accuracy of ±5% in the RH range 40-80% that is compliant with the requirements of several pharma applications.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"7 ","pages":"547-555"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10253680/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature and humidity levels inside pharmaceutical packaging can significantly affect the shelf life of the enclosed medications. The RFID technology in the UHF band is promising to address this issue as it permits to wirelessly monitor the inner environment at the item level. This work presents the design and experimental characterization of a miniaturized battery-less RFID sensor, able to simultaneously measure temperature and humidity. The proposed sensor includes a helical antenna and is compatible with the insertion into a capsule, similar to common drugs. A first prototype of the miniaturized sensor was realized and tested in terms of both communication and sensing performance. Despite variable boundary conditions, a reading distance greater than 40 cm was demonstrated. A realistic readability analysis under uncontrolled conditions estimated a probability of 65% to read the sensor from more than 20 cm. Furthermore, the humidity sensor performance was extensively characterized in a climate chamber through several tests, resulting in an accuracy of ±5% in the RH range 40-80% that is compliant with the requirements of several pharma applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于智能药品包装的小型化无电池温湿度传感器
药品包装内的温度和湿度水平会显著影响所附药品的保质期。UHF频段的RFID技术有望解决这一问题,因为它允许在物品级别无线监测内部环境。这项工作介绍了一种小型化的无电池RFID传感器的设计和实验特性,该传感器能够同时测量温度和湿度。所提出的传感器包括一个螺旋天线,与普通药物类似,可以插入胶囊。实现了微型传感器的第一个原型,并对其通信和传感性能进行了测试。尽管边界条件可变,但读数距离大于40厘米。在不受控制的条件下进行的真实可读性分析估计,从20厘米以上读取传感器的概率为65%。此外,通过多次测试,在气候室中对湿度传感器的性能进行了广泛表征,在40-80%的相对湿度范围内,精度为±5%,符合几种制药应用的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
News From CRFID Meetings Guest Editorial of the Special Issue on RFID 2023, SpliTech 2023, and IEEE RFID-TA 2023 IoT-Based Integrated Sensing and Logging Solution for Cold Chain Monitoring Applications Robust Low-Cost Drone Detection and Classification Using Convolutional Neural Networks in Low SNR Environments Overview of RFID Applications Utilizing Neural Networks A 920-MHz, 160-μW, 25-dB Gain Negative Resistance Reflection Amplifier for BPSK Modulation RFID Tag
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1