{"title":"Using Architecture Design Studio Pedagogies to Enhance Engineering Education","authors":"S. Chance, John Marshall, Gavin Duffy","doi":"10.21427/D7V62S","DOIUrl":null,"url":null,"abstract":"Problem-Based Learning pedagogies that require high levels of inquiry and hands-on engagement can enhance studentlearning in engineering. Such pedagogies lie at the core of studio-based design education, having been used to teacharchitects since the Renaissance. Today, design assignments and studio-based learning formats are finding their way intoengineering programs, often as part of larger movements to implement Student-Centered, Problem-Based Learning (PBL)pedagogies. This spectrum of pedagogies is mutually supportive, as illustrated in the University of Michigan’sSmartSurfaces course where students majoring in engineering, art and design, and architecture collaborate on wickedlycomplex and ill-defined design problems. In SmartSurfaces and other similar PBL environments, students encountercomplex, trans-disciplinary, open-ended design prompts that have timely social relevance.Analyzing data generated in studio-based PBL courses like SmartSurfaces can help educators evaluate and trackstudents’ intellectual growth. This paper presents a rubric for measuring students’ development of increasingly refinedepistemological understanding (regarding knowledge and how it is created, accessed, and used). The paper illustratesuse ofthe tool in evaluating blogs created by students in SmartSurfaces, which in turn provides evidence to help validate therubric and suggest avenues for future refinement. The overall result of the exploratory study reported here is to provideevidence of positive change among students who learn in PBL environments and to provide educators with a preliminarytool for assessing design-related epistemological development. Findings of this study indicate design-based education canhave powerful effects and collaborating across disciplines can help engineering students advance in valuable ways.","PeriodicalId":54960,"journal":{"name":"International Journal of Engineering Education","volume":"32 1","pages":"364-383"},"PeriodicalIF":0.7000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Education","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21427/D7V62S","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 9
Abstract
Problem-Based Learning pedagogies that require high levels of inquiry and hands-on engagement can enhance studentlearning in engineering. Such pedagogies lie at the core of studio-based design education, having been used to teacharchitects since the Renaissance. Today, design assignments and studio-based learning formats are finding their way intoengineering programs, often as part of larger movements to implement Student-Centered, Problem-Based Learning (PBL)pedagogies. This spectrum of pedagogies is mutually supportive, as illustrated in the University of Michigan’sSmartSurfaces course where students majoring in engineering, art and design, and architecture collaborate on wickedlycomplex and ill-defined design problems. In SmartSurfaces and other similar PBL environments, students encountercomplex, trans-disciplinary, open-ended design prompts that have timely social relevance.Analyzing data generated in studio-based PBL courses like SmartSurfaces can help educators evaluate and trackstudents’ intellectual growth. This paper presents a rubric for measuring students’ development of increasingly refinedepistemological understanding (regarding knowledge and how it is created, accessed, and used). The paper illustratesuse ofthe tool in evaluating blogs created by students in SmartSurfaces, which in turn provides evidence to help validate therubric and suggest avenues for future refinement. The overall result of the exploratory study reported here is to provideevidence of positive change among students who learn in PBL environments and to provide educators with a preliminarytool for assessing design-related epistemological development. Findings of this study indicate design-based education canhave powerful effects and collaborating across disciplines can help engineering students advance in valuable ways.
期刊介绍:
The International Journal of Engineering Education (IJEE) is an independent, peer-reviewed journal. It has been serving as an international archival forum of scholarly research related to engineering education for over thirty years. The Journal publishes six issues per year. These include, from time to time, special issues on specific engineering education topics.
Only manuscripts that have a focus on engineering education will be considered for publication.