Analysis of Skyrmion Shuffling Chamber Stochasticity for Neuromorphic Computing Applications

IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Magnetics Letters Pub Date : 2023-03-25 DOI:10.1109/LMAG.2023.3280120
Zulfidin Khodzhaev;Emrah Turgut;Jean Anne C. Incorvia
{"title":"Analysis of Skyrmion Shuffling Chamber Stochasticity for Neuromorphic Computing Applications","authors":"Zulfidin Khodzhaev;Emrah Turgut;Jean Anne C. Incorvia","doi":"10.1109/LMAG.2023.3280120","DOIUrl":null,"url":null,"abstract":"In this study, micromagnetic simulations of a magnetic skyrmion reshuffling chamber for probabilistic computing applications are performed. The skyrmion shuffling chamber is modeled with a custom current density masking technique to capture current density variation, grain boundary variations, and anisotropy changes. The results show that the skyrmion oscillatory dynamics contribute to the system's stochasticity, allowing uncorrelated signals to be achieved with a single chamber. Our findings indicate that uncorrelated signals are generally achieved at all temperatures simulated, with the skyrmion diameter playing a role in the resulting stochasticity. Furthermore, we find that local temperature control has the benefit of not affecting the overall skyrmion diameter, while still perturbing the skyrmion trajectory. The results from varying chamber size, global temperature, and local temperature are analyzed using Pearson correlation coefficient and p-value. This research contributes to the development of tunable probabilistic computing devices and artificial synapses using magnetic skyrmions.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10135086/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, micromagnetic simulations of a magnetic skyrmion reshuffling chamber for probabilistic computing applications are performed. The skyrmion shuffling chamber is modeled with a custom current density masking technique to capture current density variation, grain boundary variations, and anisotropy changes. The results show that the skyrmion oscillatory dynamics contribute to the system's stochasticity, allowing uncorrelated signals to be achieved with a single chamber. Our findings indicate that uncorrelated signals are generally achieved at all temperatures simulated, with the skyrmion diameter playing a role in the resulting stochasticity. Furthermore, we find that local temperature control has the benefit of not affecting the overall skyrmion diameter, while still perturbing the skyrmion trajectory. The results from varying chamber size, global temperature, and local temperature are analyzed using Pearson correlation coefficient and p-value. This research contributes to the development of tunable probabilistic computing devices and artificial synapses using magnetic skyrmions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于神经形态计算应用的Skyrmion Shuffling腔Stocurity分析
在这项研究中,对用于概率计算应用的磁性skyrmion改组室进行了微磁模拟。skyrmion混洗室采用定制的电流密度掩蔽技术建模,以捕捉电流密度变化、晶界变化和各向异性变化。结果表明,skyrmion振荡动力学有助于系统的随机性,允许用单个腔室获得不相关的信号。我们的研究结果表明,在模拟的所有温度下,通常都能获得不相关的信号,skyrmion直径在由此产生的随机性中发挥了作用。此外,我们发现局部温度控制的好处是不影响skyrmion的整体直径,同时仍然干扰skyrmion轨迹。使用Pearson相关系数和p值分析了不同腔室大小、全局温度和局部温度的结果。这项研究有助于开发可调谐的概率计算设备和使用磁性skyrmions的人工突触。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Magnetics Letters
IEEE Magnetics Letters PHYSICS, APPLIED-
CiteScore
2.40
自引率
0.00%
发文量
37
期刊介绍: IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest. IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.
期刊最新文献
Enhancement of Magnon–Photon Coupling Strength: Effect of Spatial Distribution Controllable Damping Boring Tool Based on Magnetorheological Elastomer A New Differential Magnetic Probe With Out-of-Phase Balun and Differential Loops Exchange-Biased Multiring Planar Hall Magnetoresistive Sensors With Nanotesla Resolution in Nonshielded Environments Spintronic Neuron Using a Magnetic Tunnel Junction for Low-Power Neuromorphic Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1