Preparation of Temperature-Sensitive Rare-Earth–Iron Alloy Fine Particles Using Mechanical Alloying and Sintering

IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Magnetics Letters Pub Date : 2023-03-29 DOI:10.1109/LMAG.2023.3281158
Jiatong Pan;Jianfei Shentu;Chunlin He;Deqian Zeng;Feng Gao;Gjergj Dodbiba;Toyohisa Fujita
{"title":"Preparation of Temperature-Sensitive Rare-Earth–Iron Alloy Fine Particles Using Mechanical Alloying and Sintering","authors":"Jiatong Pan;Jianfei Shentu;Chunlin He;Deqian Zeng;Feng Gao;Gjergj Dodbiba;Toyohisa Fujita","doi":"10.1109/LMAG.2023.3281158","DOIUrl":null,"url":null,"abstract":"Fine magnetic particles with high saturation magnetization and a large temperature-sensitive magnetization in the temperature range 300–400 K were prepared for use in temperature-sensitive magnetorheological fluids. Two methods, namely high-energy ball milling (HEBM) and sintering followed by HEBM to produce mechanochemical alloys, were used to produce R\n<sub>2</sub>\nFe\n<sub>17</sub>\n component particles. The prepared particles were submicrometer- to micrometer-sized and contained rare-earth–iron alloys and α-Fe phases. Among the prepared particles, Sm\n<sub>2</sub>\nFe\n<sub>17</sub>\n composition powder exhibited the highest temperature sensitivity of −0.02 A m\n<sup>2</sup>\n kg\n<sup>−1</sup>\n K\n<sup>−1</sup>\n at 400 K. Furthermore, powders with varying Fe and Sm composition ratios were prepared by sintering and ball milling. The powder prepared from the initial SmFe\n<sub>5</sub>\n composition exhibited the highest temperature sensitivity of −0.32 A m\n<sup>2</sup>\n kg\n<sup>−1</sup>\n K\n<sup>−1</sup>\n at 400 K and saturation magnetization was ∼90 A m\n<sup>2</sup>\n kg\n<sup>−1</sup>\n. The powder was composed of SmFe\n<sub>5</sub>\n and Sm\n<sub>2</sub>\nFe\n<sub>17</sub>\n in crystalline, α-Fe phase, and amorphous phase, as revealed by X-ray diffraction analysis and a scanning electron microscope, as well as high-resolution transmission electron microscopy with selected area electron diffraction.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10138366/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Fine magnetic particles with high saturation magnetization and a large temperature-sensitive magnetization in the temperature range 300–400 K were prepared for use in temperature-sensitive magnetorheological fluids. Two methods, namely high-energy ball milling (HEBM) and sintering followed by HEBM to produce mechanochemical alloys, were used to produce R 2 Fe 17 component particles. The prepared particles were submicrometer- to micrometer-sized and contained rare-earth–iron alloys and α-Fe phases. Among the prepared particles, Sm 2 Fe 17 composition powder exhibited the highest temperature sensitivity of −0.02 A m 2 kg −1 K −1 at 400 K. Furthermore, powders with varying Fe and Sm composition ratios were prepared by sintering and ball milling. The powder prepared from the initial SmFe 5 composition exhibited the highest temperature sensitivity of −0.32 A m 2 kg −1 K −1 at 400 K and saturation magnetization was ∼90 A m 2 kg −1 . The powder was composed of SmFe 5 and Sm 2 Fe 17 in crystalline, α-Fe phase, and amorphous phase, as revealed by X-ray diffraction analysis and a scanning electron microscope, as well as high-resolution transmission electron microscopy with selected area electron diffraction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用机械合金化和烧结法制备对温度敏感的稀土-铁合金细颗粒
制备了在300–400 K温度范围内具有高饱和磁化强度和大温敏磁化强度的精细磁性颗粒,用于温敏磁流变流体。使用两种方法,即高能球磨(HEBM)和烧结,然后用HEBM生产机械化学合金,来生产R2Fe17组分颗粒。制备的颗粒尺寸为亚微米至微米,含有稀土-铁合金和α-Fe相。在制备的颗粒中,Sm2Fe17组成的粉末在400 K下表现出最高的温度敏感性,为−0.02 A m2 kg−1 K−1。此外,通过烧结和球磨制备了不同Fe和Sm组成比的粉末。由初始SmFe5成分制备的粉末在400 K下表现出最高的温度敏感性,为−0.32 A m2 kg−1 K−1,饱和磁化强度为~90 A m2 kg-1。X射线衍射分析和扫描电子显微镜以及选区电子衍射的高分辨率透射电子显微镜显示,该粉末由结晶相、α-Fe相和非晶相的SmFe5和Sm2Fe17组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Magnetics Letters
IEEE Magnetics Letters PHYSICS, APPLIED-
CiteScore
2.40
自引率
0.00%
发文量
37
期刊介绍: IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest. IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.
期刊最新文献
Enhancement of Magnon–Photon Coupling Strength: Effect of Spatial Distribution Controllable Damping Boring Tool Based on Magnetorheological Elastomer A New Differential Magnetic Probe With Out-of-Phase Balun and Differential Loops Exchange-Biased Multiring Planar Hall Magnetoresistive Sensors With Nanotesla Resolution in Nonshielded Environments Spintronic Neuron Using a Magnetic Tunnel Junction for Low-Power Neuromorphic Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1