{"title":"Generalized low-error area-efficient fixed-width multipliers","authors":"L.-D. Van;Chih-Chyau Yang","doi":"10.1109/TCSI.2005.851675","DOIUrl":null,"url":null,"abstract":"In this paper, we extend our previous methodology for designing a family of low-error area-efficient fixed-width two's-complement multipliers that receive two n-bit numbers and produce an n-bit product. The generalized methodology involving four steps results in several better error-compensation biases. These better error-compensation biases can be easily mapped to low-error area-efficient fixed-width multipliers suitable for very large-scale integration implementation and digital signal processing application. Via the proposed Type 1 8 /spl times/ 8 fixed-width multiplier, the reduction of the average error can be improved by 88% compared with the direct-truncated (D-Truncated) multiplier. It is also shown that the same proposed multiplier leads to 32.75% reduction in area compared with the standard multiplier.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"52 8","pages":"1608-1619"},"PeriodicalIF":5.2000,"publicationDate":"2005-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCSI.2005.851675","citationCount":"165","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/1495727/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 165
Abstract
In this paper, we extend our previous methodology for designing a family of low-error area-efficient fixed-width two's-complement multipliers that receive two n-bit numbers and produce an n-bit product. The generalized methodology involving four steps results in several better error-compensation biases. These better error-compensation biases can be easily mapped to low-error area-efficient fixed-width multipliers suitable for very large-scale integration implementation and digital signal processing application. Via the proposed Type 1 8 /spl times/ 8 fixed-width multiplier, the reduction of the average error can be improved by 88% compared with the direct-truncated (D-Truncated) multiplier. It is also shown that the same proposed multiplier leads to 32.75% reduction in area compared with the standard multiplier.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.