Türkiye’deki Tiftik Üretimi Değişiminin Regresyon Analizi ile İncelenmesi

A. Tatliyer
{"title":"Türkiye’deki Tiftik Üretimi Değişiminin Regresyon Analizi ile İncelenmesi","authors":"A. Tatliyer","doi":"10.19159/tutad.773412","DOIUrl":null,"url":null,"abstract":"The aim of this study is to investigate the changes in the number of Angora goat and the amount of mohair obtained from Angora goats, which is one of the Turkey's important gene sources from Central Asia to present day, between 1991-2019 in Turkey via different regression models and to evaluate the results. For this purpose, simple linear, quadratic, cubic, inverse, and logarithmic regression models are used in the study. In order to compare the regression models and determine the most suitable model, the square root of the mean squares (Root Mean Square error-RMSE), the determination coefficient (R2) and the adjusted determination coefficient (AdjR2) were used as comparison criteria. Accordingly, R2 values obtained from simple linear, quadratic, cubic, inverse and logarithmic regression models for the number of Ankara goats shorn are 0.628, 0.99, 0.99, 0.74, 0.90, and RMSE are 135288.27, 25651.46, 18966.20, 114681.75, 71592.54, respectively. For Mohair production, R2 values are 0.61, 0.98, 0.99, 0.75, 0.88, while RMSE is 208.99, 41.84, 32.64, 167.85 and 114.32 respectively. In the number of angora goats, R2 values are 0.70, 0.99, 0.99, 0.73, 0.93, while RMSE is 165264.22, 32818.49, 23410.64, 155421.63 and 79544.79, respectively. In parameter estimates, the most appropriate model according to the highest R2 value and the lowest RMSE value is the cubic regression model. According to the cubic regression model, the estimated number of Angora goats that will be shorn, the number of Angora (mohair) goat, and mohair production in Turkey will be 254307 and 275431 heads, 268321 and 287846 heads, and 439 and 474 tons in 2020 and 2021, respectively. Although in the coming years, an increase in mohair production is projected in Turkey, this is much lower than expected.","PeriodicalId":32452,"journal":{"name":"Turkiye Tarimsal Arastirmalar Dergisi","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkiye Tarimsal Arastirmalar Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19159/tutad.773412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this study is to investigate the changes in the number of Angora goat and the amount of mohair obtained from Angora goats, which is one of the Turkey's important gene sources from Central Asia to present day, between 1991-2019 in Turkey via different regression models and to evaluate the results. For this purpose, simple linear, quadratic, cubic, inverse, and logarithmic regression models are used in the study. In order to compare the regression models and determine the most suitable model, the square root of the mean squares (Root Mean Square error-RMSE), the determination coefficient (R2) and the adjusted determination coefficient (AdjR2) were used as comparison criteria. Accordingly, R2 values obtained from simple linear, quadratic, cubic, inverse and logarithmic regression models for the number of Ankara goats shorn are 0.628, 0.99, 0.99, 0.74, 0.90, and RMSE are 135288.27, 25651.46, 18966.20, 114681.75, 71592.54, respectively. For Mohair production, R2 values are 0.61, 0.98, 0.99, 0.75, 0.88, while RMSE is 208.99, 41.84, 32.64, 167.85 and 114.32 respectively. In the number of angora goats, R2 values are 0.70, 0.99, 0.99, 0.73, 0.93, while RMSE is 165264.22, 32818.49, 23410.64, 155421.63 and 79544.79, respectively. In parameter estimates, the most appropriate model according to the highest R2 value and the lowest RMSE value is the cubic regression model. According to the cubic regression model, the estimated number of Angora goats that will be shorn, the number of Angora (mohair) goat, and mohair production in Turkey will be 254307 and 275431 heads, 268321 and 287846 heads, and 439 and 474 tons in 2020 and 2021, respectively. Although in the coming years, an increase in mohair production is projected in Turkey, this is much lower than expected.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土耳其典型生产变化的扫描回归分析
本研究的目的是通过不同的回归模型调查1991-2019年土耳其安哥拉山羊数量和从安哥拉山羊获得的马海毛数量的变化,安哥拉山羊是土耳其从中亚至今的重要基因来源之一。为此,研究中使用了简单的线性、二次、三次、逆和对数回归模型。为了比较各回归模型,确定最合适的模型,采用均方根误差(root mean square error-RMSE)的平方根、决定系数(R2)和调整后的决定系数(AdjR2)作为比较标准。由此得出,安卡拉山羊剪毛数的简单线性、二次、三次、逆、对数回归模型的R2值分别为0.628、0.99、0.99、0.74、0.90,RMSE分别为135288.27、25651.46、18966.20、114681.75、71592.54。马海毛产量的R2分别为0.61、0.98、0.99、0.75、0.88,RMSE分别为208.99、41.84、32.64、167.85、114.32。安哥拉山羊数量的R2值分别为0.70、0.99、0.99、0.73、0.93,RMSE分别为165264.22、32818.49、23410.64、155421.63、79544.79。在参数估计中,根据最高R2值和最低RMSE值,最合适的模型是三次回归模型。根据三次回归模型,预计2020年和2021年安哥拉山羊剪毛数量、安哥拉(马海毛)山羊数量和土耳其马海毛产量分别为254307头和275431头、268321头和287846头、439吨和474吨。尽管在未来几年,预计土耳其的马海毛产量将增加,但这远远低于预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
24 weeks
期刊最新文献
Mercimek Ürününe Karışan Yabancı Ot Tohumlarının Belirlenmesi Evaluation of Heavy Metal Pollution in Rice Fields of Bafra Plain Isolates of Bean Common Mosaic Potyvirus (BCMV) characterized from bean plants affected by mosaic disease in Denizli province, Turkey Buğday Hasadı Sonrası İkinci Ürün Soya Yetiştiriciliğinde Farklı Toprak İşleme ve Ekim Yöntemlerinin Toprağın Bazı Fiziksel Özelliklerine ve Bitki Çıkış Oranına Etkisi Tüketicilerin Biber Salçası Tüketim Tercihlerini Etkileyen Unsurlar: Bahçe İlçesi Örneği
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1