EFFECT OF GAMMA IRRADIATION ON THE GROWTH AND DEVELOPMENT OF SAGO PALM (Metroxylon sagu Rottb.) CALLI

Q4 Agricultural and Biological Sciences Indonesian Journal of Agricultural Science Pub Date : 2016-04-01 DOI:10.21082/ijas.v17n1.2016.p35-40
I. Riyadi, S. Sumaryono
{"title":"EFFECT OF GAMMA IRRADIATION ON THE GROWTH AND DEVELOPMENT OF SAGO PALM (Metroxylon sagu Rottb.) CALLI","authors":"I. Riyadi, S. Sumaryono","doi":"10.21082/ijas.v17n1.2016.p35-40","DOIUrl":null,"url":null,"abstract":"The application of gamma irradiation on plant materials may increase the genetic variation of the offspring with useful traits. The experiment was conducted to determine the effect of irradiation dosage of gamma ray on growth and development of sago palm (Metroxylon sagu) calli. Friable calli of sago palm derived from suspension culture were used as a material source. The primary calli were initiated from apical meristematic tissues of sago palm suckers of Alitir variety from Merauke, Papua. The treatments used were dosage of gamma ray irradiation at 0, 5, 10, 15, 20 and 25 Gy. The treated calli were then subcultured on modified Murashige and Skoog (MMS) solid medium containing 3% sucrose and 0.1% activated charcoal and added with 1 mg l-1 2,4-D and 0.1 mg l-1 kinetin. The results showed that at all irradiation dosages, calli biomass increased significantly. The highest proliferation of calli biomass of 5.33 folds from the initial culture after 4 weeks was achieved at gamma irradiation of 25 Gy, whereas the lowest proliferation of calli biomass of 3.4 folds was achieved at control. The best development of embryogenic calli was obtained at 10 Gy that produced 100% somatic embryos, whereas the lowest somatic embryo formation at 0% was obtained at 0 and 25 Gy after one subculture. High response of somatic embryo induction to gamma irradiation at 10 Gy may increase production of somatic embryos. These results can be used in in vitro breeding of sago palm via mutagenesis to create new elite varieties.","PeriodicalId":13456,"journal":{"name":"Indonesian Journal of Agricultural Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Agricultural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21082/ijas.v17n1.2016.p35-40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The application of gamma irradiation on plant materials may increase the genetic variation of the offspring with useful traits. The experiment was conducted to determine the effect of irradiation dosage of gamma ray on growth and development of sago palm (Metroxylon sagu) calli. Friable calli of sago palm derived from suspension culture were used as a material source. The primary calli were initiated from apical meristematic tissues of sago palm suckers of Alitir variety from Merauke, Papua. The treatments used were dosage of gamma ray irradiation at 0, 5, 10, 15, 20 and 25 Gy. The treated calli were then subcultured on modified Murashige and Skoog (MMS) solid medium containing 3% sucrose and 0.1% activated charcoal and added with 1 mg l-1 2,4-D and 0.1 mg l-1 kinetin. The results showed that at all irradiation dosages, calli biomass increased significantly. The highest proliferation of calli biomass of 5.33 folds from the initial culture after 4 weeks was achieved at gamma irradiation of 25 Gy, whereas the lowest proliferation of calli biomass of 3.4 folds was achieved at control. The best development of embryogenic calli was obtained at 10 Gy that produced 100% somatic embryos, whereas the lowest somatic embryo formation at 0% was obtained at 0 and 25 Gy after one subculture. High response of somatic embryo induction to gamma irradiation at 10 Gy may increase production of somatic embryos. These results can be used in in vitro breeding of sago palm via mutagenesis to create new elite varieties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
γ辐射对西米棕榈生长发育的影响愈伤组织
在植物材料上应用伽玛辐射可以增加具有有用性状的后代的遗传变异。研究了γ射线辐照剂量对西米愈伤组织生长发育的影响。以悬浮培养的西米掌易碎愈伤组织为材料来源。初生愈伤组织是从巴布亚Merauke的Alitir品种西米棕榈吸根的顶端分生组织中产生的。治疗剂量分别为0、5、10、15、20和25 Gy。将处理后的愈伤组织传代于含有3%蔗糖和0.1%活性炭的改性Murashige和Skoog (MMS)固体培养基上,并添加1 mg l-1 2,4- d和0.1 mg l-1 kinetin。结果表明,在不同辐照剂量下,愈伤组织生物量均显著增加。在25 Gy辐照条件下,培养4周后愈伤组织的增殖量最高,达到5.33倍,而在对照条件下,愈伤组织的增殖量最低,为3.4倍。胚性愈伤组织在10 Gy时发育最好,体胚率为100%,而在0和25 Gy时,体胚率最低,为0%。体胚诱导对γ辐照的高响应可能会增加体胚的产量。这些结果可用于西米棕榈的诱变体外选育,以培育新的优良品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Indonesian Journal of Agricultural Science
Indonesian Journal of Agricultural Science Agricultural and Biological Sciences-Soil Science
CiteScore
1.00
自引率
0.00%
发文量
5
审稿时长
12 weeks
期刊最新文献
THE EFFECT OF OZONATED WATER WASHING ON THE QUALITY OF HONEY PINEAPPLE PRESERVED AT ROOM TEMPERATURE AND IN THE OZONE COLD STORAGE TOLERANCE OF IRRIGATED LOWLAND RICE VARIETIES TO IRON TOXICITY UNDER NUTRIENT SOLUTION AS MEASURED BY A DIGITAL IMAGE PROCESSING IN VITRO EFFICACY OF DISPARATE FUNGICIDES AGAINST Lasiodiplodia theobromae ROOT ROTS OF ORANGE-FLESHED SWEET-POTATO VARIETIES DETERMINING THE EFFICIENCY OF NITROGEN FERTILIZERS ON MAIZE USING ISOTOPE METHODS AT DIFFERENT IRRIGATION LEVELS GENOTYPE BY ENVIRONMENT INTERACTION AND STABILITY ANALYSIS OF ETHIOPIAN COMMERCIAL DURUM WHEAT (Triticum turgidum L.) CULTIVARS IN SOUTHERN ETHIOPIA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1