Time-Domain Computation of Full-Wave Partial Inductances Based on the Modified Numerical Inversion of Laplace Transform Method

Fabrizio Loreto;Daniele Romano;Martin Štumpf;Albert E. Ruehli;Giulio Antonini
{"title":"Time-Domain Computation of Full-Wave Partial Inductances Based on the Modified Numerical Inversion of Laplace Transform Method","authors":"Fabrizio Loreto;Daniele Romano;Martin Štumpf;Albert E. Ruehli;Giulio Antonini","doi":"10.1109/TSIPI.2022.3179250","DOIUrl":null,"url":null,"abstract":"The partial inductance is a very well known concept in electromagnetic modeling that allows us to ascribe the properties of inductance to an isolated piece of conductor and of a mutual inductance to a couple of finite-size conductors, not necessarily constituting a closed loop as it is required for the standard concept of inductance. Although, its computation has been widely studied in the static case and in the frequency domain for the dynamic case, its computation in the time domain (TD) has been only partially addressed. This article aims to fill this gap also pointing out their use in the framework of a TD solver. In particular, the modified numerical inversion of the Laplace transform (NILT) is adopted to compute the time samples of the partial inductance avoiding the cumbersome inverse Fourier transform (IFT). It will be shown that, in addition to the high accuracy, the delayed implementation of the NILT method strictly preserves the causality of the magnetic coupling. Furthermore, the use of Hermite interpolation allows us to significantly reduce the computational effort. The proposed method is tested by comparison with analytical formulas existing for coplanar zero-thickness regions and with IFT techniques for the both orthogonal and nonorthogonal geometries.","PeriodicalId":100646,"journal":{"name":"IEEE Transactions on Signal and Power Integrity","volume":"1 ","pages":"32-42"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Power Integrity","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9786010/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The partial inductance is a very well known concept in electromagnetic modeling that allows us to ascribe the properties of inductance to an isolated piece of conductor and of a mutual inductance to a couple of finite-size conductors, not necessarily constituting a closed loop as it is required for the standard concept of inductance. Although, its computation has been widely studied in the static case and in the frequency domain for the dynamic case, its computation in the time domain (TD) has been only partially addressed. This article aims to fill this gap also pointing out their use in the framework of a TD solver. In particular, the modified numerical inversion of the Laplace transform (NILT) is adopted to compute the time samples of the partial inductance avoiding the cumbersome inverse Fourier transform (IFT). It will be shown that, in addition to the high accuracy, the delayed implementation of the NILT method strictly preserves the causality of the magnetic coupling. Furthermore, the use of Hermite interpolation allows us to significantly reduce the computational effort. The proposed method is tested by comparison with analytical formulas existing for coplanar zero-thickness regions and with IFT techniques for the both orthogonal and nonorthogonal geometries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进的拉普拉斯变换数值反演方法的全波部分电感时域计算
在电磁建模中,部分电感是一个众所周知的概念,它使我们能够将电感的特性归因于一个孤立的导体,将互感的性质归因于一对有限尺寸的导体,而不一定像电感的标准概念所要求的那样构成闭环。尽管在静态情况下和动态情况下在频域中对其计算进行了广泛的研究,但在时域(TD)中的计算仅得到了部分解决。本文旨在填补这一空白,并指出它们在TD求解器框架中的使用。特别地,采用改进的拉普拉斯变换的数值反演(NILT)来计算部分电感的时间样本,避免了繁琐的傅立叶逆变换(IFT)。结果表明,除了高精度外,NILT方法的延迟实现严格保留了磁耦合的因果关系。此外,埃尔米特插值的使用使我们能够显著减少计算工作量。通过与共面零厚度区域的解析公式以及正交和非正交几何的IFT技术的比较,对所提出的方法进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Cover 2024 Index IEEE Transactions on Signal and Power Integrity Vol. 3 IEEE Electromagnetic Compatibility Society Information System-Level Application of the Z-Directed Component (ZDC) for Power Integrity Multilayer Ceramic Capacitor Source Model Application in Acoustic Noise Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1