Synergistic Distributed Thermal Regulation for On-CMOS High-Throughput Multimodal Amperometric DNA-Array Analysis

Hamed Mazhab Jafari;Xilin Liu;Roman Genov
{"title":"Synergistic Distributed Thermal Regulation for On-CMOS High-Throughput Multimodal Amperometric DNA-Array Analysis","authors":"Hamed Mazhab Jafari;Xilin Liu;Roman Genov","doi":"10.1109/OJSSCS.2023.3236305","DOIUrl":null,"url":null,"abstract":"Accurate temperature regulation is critical for amperometric DNA analysis to achieve high fidelity, reliability, and throughput. In this work, a \n<inline-formula> <tex-math>$9\\times 6$ </tex-math></inline-formula>\n cell array of mixed-signal CMOS distributed temperature regulators for on-CMOS multimodal amperometric DNA analysis is presented. Three DNA analysis methods are supported, including constant potential amperometry (CPA), cyclic voltammetry (CV), and impedance spectroscopy (IS). In-cell heating and temperature-sensing elements are implemented in standard CMOS technology without post-processing. Using proportional–integral–derivative (PID) control, the local temperature can be regulated to within ±0.5 °C of any desired value between 20 °C and 90 °C. To allow the in-cell integration of independent PID control, a new mixed-signal design is proposed, where the two computationally intensive operations in the PID algorithm, multiplication and subtraction, are performed by an in-cell dual-slope multiplying ADC, resulting in a small area and low power consumption. Over 95% of the circuit blocks are synergistically shared among the four operating modes, including CPA, CV, IS, and the proposed temperature regulation mode. A 3 mm \n<inline-formula> <tex-math>$\\times3$ </tex-math></inline-formula>\n mm CMOS prototype fabricated in a 0.13-\n<inline-formula> <tex-math>$\\mu \\text{m}$ </tex-math></inline-formula>\n CMOS technology has been fully experimentally characterized. The proposed distributed temperature regulation design and the mixed-signal PID implementation can be applied to a wide range of sensory and other applications.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"89-102"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/10019316/10015870.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10015870/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurate temperature regulation is critical for amperometric DNA analysis to achieve high fidelity, reliability, and throughput. In this work, a $9\times 6$ cell array of mixed-signal CMOS distributed temperature regulators for on-CMOS multimodal amperometric DNA analysis is presented. Three DNA analysis methods are supported, including constant potential amperometry (CPA), cyclic voltammetry (CV), and impedance spectroscopy (IS). In-cell heating and temperature-sensing elements are implemented in standard CMOS technology without post-processing. Using proportional–integral–derivative (PID) control, the local temperature can be regulated to within ±0.5 °C of any desired value between 20 °C and 90 °C. To allow the in-cell integration of independent PID control, a new mixed-signal design is proposed, where the two computationally intensive operations in the PID algorithm, multiplication and subtraction, are performed by an in-cell dual-slope multiplying ADC, resulting in a small area and low power consumption. Over 95% of the circuit blocks are synergistically shared among the four operating modes, including CPA, CV, IS, and the proposed temperature regulation mode. A 3 mm $\times3$ mm CMOS prototype fabricated in a 0.13- $\mu \text{m}$ CMOS technology has been fully experimentally characterized. The proposed distributed temperature regulation design and the mixed-signal PID implementation can be applied to a wide range of sensory and other applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CMOS上高通量多模式安培DNA阵列分析的协同分布式热调节
准确的温度调节对于电流型DNA分析至关重要,以实现高保真度、可靠性和吞吐量。在这项工作中,提出了一种用于CMOS多峰电流DNA分析的混合信号CMOS分布式温度调节器的$9×6$单元阵列。支持三种DNA分析方法,包括恒电位安培法(CPA)、循环伏安法(CV)和阻抗谱法(IS)。单元内加热和温度传感元件采用标准CMOS技术实现,无需后处理。使用比例-积分-微分(PID)控制,可以将本地温度调节到20°C和90°C之间任何所需值的±0.5°C范围内。为了实现独立PID控制的单元内集成,提出了一种新的混合信号设计,其中PID算法中的两个计算密集型运算(乘法和减法)由单元内双斜率乘法ADC执行,从而实现小面积和低功耗。超过95%的电路块在四种操作模式之间协同共享,包括CPA、CV、IS和所提出的温度调节模式。在0.13-$\mu\text{m}$CMOS技术中制造的3毫米$\times3$mm CMOS原型已经得到了充分的实验表征。所提出的分布式温度调节设计和混合信号PID实现可以应用于广泛的传感和其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Problem of Spurious Emissions in 5G FR2 Phased Arrays, and a Solution Based on an Upmixer With Embedded LO Leakage Cancellation SAR-Assisted Energy-Efficient Hybrid ADCs Systematic Equation-Based Design of a 10-Bit, 500-MS/s Single-Channel SAR A/D Converter With 2-GHz Resolution Bandwidth Digital Phase-Locked Loops: Exploring Different Boundaries 8-Shaped Inductors: An Essential Addition to RFIC Designers’ Toolbox
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1