Temporal Multiple Rotation Averaging on a Distributed Dynamic Network

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal and Information Processing over Networks Pub Date : 2023-09-11 DOI:10.1109/TSIPN.2023.3313817
Aidan Blair;Amirali Khodadadian Gostar;Ruwan Tennakoon;Alireza Bab-Hadiashar;Reza Hoseinnezhad
{"title":"Temporal Multiple Rotation Averaging on a Distributed Dynamic Network","authors":"Aidan Blair;Amirali Khodadadian Gostar;Ruwan Tennakoon;Alireza Bab-Hadiashar;Reza Hoseinnezhad","doi":"10.1109/TSIPN.2023.3313817","DOIUrl":null,"url":null,"abstract":"This article proposes a solution for multiple rotation averaging on time-series data such as video. In applications using video data such as target tracking, in addition to the data found in individual frames, temporal information across multiple frames such as target trajectories can be used to more accurately estimate target states. Existing techniques for robust rotation averaging, including traditional iterative optimization and emerging neural network methods, do not exploit this temporal information. We first introduce the problem of using temporal data in rotation averaging and propose an extension to existing multiple rotation averaging methods via temporal rrotations. We then propose implementing a motion model for the cameras and predicting camera states using a particle filter, which are used to initialize the rotation averaging algorithm. These methods' performance is evaluated through a Monte Carlo Simulation on synthetic data and compared to an existing method. The results show that using temporal data in time-series datasets significantly increases the accuracy compared to the traditional algorithm for rotation averaging.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"9 ","pages":"669-678"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10247092/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a solution for multiple rotation averaging on time-series data such as video. In applications using video data such as target tracking, in addition to the data found in individual frames, temporal information across multiple frames such as target trajectories can be used to more accurately estimate target states. Existing techniques for robust rotation averaging, including traditional iterative optimization and emerging neural network methods, do not exploit this temporal information. We first introduce the problem of using temporal data in rotation averaging and propose an extension to existing multiple rotation averaging methods via temporal rrotations. We then propose implementing a motion model for the cameras and predicting camera states using a particle filter, which are used to initialize the rotation averaging algorithm. These methods' performance is evaluated through a Monte Carlo Simulation on synthetic data and compared to an existing method. The results show that using temporal data in time-series datasets significantly increases the accuracy compared to the traditional algorithm for rotation averaging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式动态网络上的时间多重旋转平均
本文提出了一种对视频等时间序列数据进行多重旋转平均的解决方案。在使用视频数据(如目标跟踪)的应用中,除了在单个帧中发现的数据之外,还可以使用跨多个帧的时间信息(如目标轨迹)来更准确地估计目标状态。现有的鲁棒旋转平均技术,包括传统的迭代优化和新兴的神经网络方法,没有利用这种时间信息。我们首先介绍了在旋转平均中使用时间数据的问题,并通过时间误差对现有的多旋转平均方法进行了扩展。然后,我们建议实现相机的运动模型,并使用粒子滤波器预测相机状态,粒子滤波器用于初始化旋转平均算法。通过对合成数据的蒙特卡罗模拟来评估这些方法的性能,并与现有方法进行比较。结果表明,与传统的旋转平均算法相比,在时间序列数据集中使用时间数据显著提高了精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Signal and Information Processing over Networks
IEEE Transactions on Signal and Information Processing over Networks Computer Science-Computer Networks and Communications
CiteScore
5.80
自引率
12.50%
发文量
56
期刊介绍: The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.
期刊最新文献
Reinforcement Learning-Based Event-Triggered Constrained Containment Control for Perturbed Multiagent Systems Finite-Time Performance Mask Function-Based Distributed Privacy-Preserving Consensus: Case Study on Optimal Dispatch of Energy System Discrete-Time Controllability of Cartesian Product Networks Generalized Simplicial Attention Neural Networks A Continuous-Time Algorithm for Distributed Optimization With Nonuniform Time-Delay Under Switching and Unbalanced Digraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1