{"title":"IEEE Open Journal of the Solid-State Circuits Society Special Section on Integrated Circuits and Systems Based on Thin-Film Transistors","authors":"Kris Myny","doi":"10.1109/OJSSCS.2022.3227060","DOIUrl":null,"url":null,"abstract":"Thin-Film transistors (TFTs) are ubiquitous today as a backplane technology for various display and imager products. Those transistors act as switches in active-matrix liquid-crystal displays (AM-LCDs) or as full-pixel engines, including driving and threshold compensation, in active-matrix organic light-emitting diodes (AM-OLEDs) panels. TFT manufacturing requires only a limited amount of photolithographic steps, making it a relatively simple transistor technology, compared to the traditional Si CMOS technologies. The processing temperature of TFT technologies is sufficiently low to be compatible with glass and can even enable flexible substrates. Finally, these transistors have been developed specifically for large-area applications, such as televisions and X-ray scanners. Consequently, the backplane size for TFTs has evolved from the generation-1 glass panel of 270 mm by 360 mm to generation-10.5, which is manufactured on a glass panel of 2.94 m \n<inline-formula> <tex-math>$\\times3.37$ </tex-math></inline-formula>\n m \n<xref>[1]</xref>\n. This is profoundly different from traditional Si CMOS integrated circuits, which are fabricated nowadays on 200 mm or 300 mm round wafers. The critical dimension of the TFT technology on glass or flexible substrate in production is in the range of a few micrometers. The TFT research in the display field focuses on enabling increasingly better pixel resolution, improved visual quality, larger panels for LED walls, flexible displays, camera-behind display, sensor integration, and many more.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"2 ","pages":"175-176"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/9733783/09985431.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9985431/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Thin-Film transistors (TFTs) are ubiquitous today as a backplane technology for various display and imager products. Those transistors act as switches in active-matrix liquid-crystal displays (AM-LCDs) or as full-pixel engines, including driving and threshold compensation, in active-matrix organic light-emitting diodes (AM-OLEDs) panels. TFT manufacturing requires only a limited amount of photolithographic steps, making it a relatively simple transistor technology, compared to the traditional Si CMOS technologies. The processing temperature of TFT technologies is sufficiently low to be compatible with glass and can even enable flexible substrates. Finally, these transistors have been developed specifically for large-area applications, such as televisions and X-ray scanners. Consequently, the backplane size for TFTs has evolved from the generation-1 glass panel of 270 mm by 360 mm to generation-10.5, which is manufactured on a glass panel of 2.94 m
$\times3.37$
m
[1]
. This is profoundly different from traditional Si CMOS integrated circuits, which are fabricated nowadays on 200 mm or 300 mm round wafers. The critical dimension of the TFT technology on glass or flexible substrate in production is in the range of a few micrometers. The TFT research in the display field focuses on enabling increasingly better pixel resolution, improved visual quality, larger panels for LED walls, flexible displays, camera-behind display, sensor integration, and many more.