{"title":"GPU and CPU-Based Parallel FDTD Methods for Frequency-Dependent Transmission Line Models","authors":"Manuja Gunawardana;Behzad Kordi","doi":"10.1109/LEMCPA.2022.3191597","DOIUrl":null,"url":null,"abstract":"Finite-difference time-domain (FDTD) is a popular method utilized for solving frequency-dependent transmission line structures. It is also conveniently applicable to nonuniform wires. The FDTD algorithm discretizes the transmission line problem into a finite number of space-segments and solve for the voltage and current of each segment at every time-step. Therefore, they inherently involve more computations per timestep than conventional terminal based models. In this letter, parallel implementations of a modified FDTD algorithm for a frequency-dependent transmission line problem using multicore CPU and GPU architectures are proposed in order to increase its computational efficiency. Accuracy and performance of the parallel FDTD methods are discussed with examples. The results indicate that a speedup of a few folds compared to serial execution is achieved by the parallel implementation using multicore CPU architecture whereas a massive speedup is achieved by using GPU. The proposed model is also suitable for modelling transmission lines in massively parallel electromagnetic transient (EMT) simulation methods.","PeriodicalId":100625,"journal":{"name":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","volume":"4 3","pages":"66-70"},"PeriodicalIF":0.9000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Letters on Electromagnetic Compatibility Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9830725/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Finite-difference time-domain (FDTD) is a popular method utilized for solving frequency-dependent transmission line structures. It is also conveniently applicable to nonuniform wires. The FDTD algorithm discretizes the transmission line problem into a finite number of space-segments and solve for the voltage and current of each segment at every time-step. Therefore, they inherently involve more computations per timestep than conventional terminal based models. In this letter, parallel implementations of a modified FDTD algorithm for a frequency-dependent transmission line problem using multicore CPU and GPU architectures are proposed in order to increase its computational efficiency. Accuracy and performance of the parallel FDTD methods are discussed with examples. The results indicate that a speedup of a few folds compared to serial execution is achieved by the parallel implementation using multicore CPU architecture whereas a massive speedup is achieved by using GPU. The proposed model is also suitable for modelling transmission lines in massively parallel electromagnetic transient (EMT) simulation methods.