Twitter Bot Detection Using Neural Networks and Linguistic Embeddings

Feng Wei;Uyen Trang Nguyen
{"title":"Twitter Bot Detection Using Neural Networks and Linguistic Embeddings","authors":"Feng Wei;Uyen Trang Nguyen","doi":"10.1109/OJCS.2023.3302286","DOIUrl":null,"url":null,"abstract":"Twitter is a web application playing the dual role of online social networking and micro-blogging. The popularity and open structure of Twitter have attracted a large number of automated programs, known as bots. In this article, we propose a Twitter bot detection model using recurrent neural networks, specifically bidirectional lightweight gated recurrent unit (BiLGRU), and linguistic embeddings. To the best of our knowledge, our Twitter bot detection model is the first that does not require any handcrafted features, or prior knowledge or assumptions about account profiles, friendship networks or historical behavior. The proposed model uses only textual content of tweets and linguistic embeddings to classify bot and human accounts on Twitter. Experimental results show that the proposed model performs better or comparably to state-of-the-art Twitter bot detection models while requiring no feature engineering, making it faster and easier to train and deploy in a real network. We also present experimental results that show the performance and computational costs of different types of linguistic embeddings and recurrence network variants for the task of Twitter bot detection. The results will potentially help researchers design high-performance deep-learning models for similar tasks.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"4 ","pages":"218-230"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782664/10016900/10210119.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10210119/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Twitter is a web application playing the dual role of online social networking and micro-blogging. The popularity and open structure of Twitter have attracted a large number of automated programs, known as bots. In this article, we propose a Twitter bot detection model using recurrent neural networks, specifically bidirectional lightweight gated recurrent unit (BiLGRU), and linguistic embeddings. To the best of our knowledge, our Twitter bot detection model is the first that does not require any handcrafted features, or prior knowledge or assumptions about account profiles, friendship networks or historical behavior. The proposed model uses only textual content of tweets and linguistic embeddings to classify bot and human accounts on Twitter. Experimental results show that the proposed model performs better or comparably to state-of-the-art Twitter bot detection models while requiring no feature engineering, making it faster and easier to train and deploy in a real network. We also present experimental results that show the performance and computational costs of different types of linguistic embeddings and recurrence network variants for the task of Twitter bot detection. The results will potentially help researchers design high-performance deep-learning models for similar tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用神经网络和语言嵌入的Twitter Bot检测
Twitter是一个网络应用程序,扮演着在线社交网络和微博的双重角色。推特的流行和开放结构吸引了大量被称为机器人的自动化程序。在本文中,我们提出了一个使用递归神经网络的Twitter机器人检测模型,特别是双向轻量级门控递归单元(BiLGRU)和语言嵌入。据我们所知,我们的推特机器人检测模型是第一个不需要任何手工制作的功能,也不需要关于账户档案、友谊网络或历史行为的先验知识或假设的模型。所提出的模型仅使用推文的文本内容和语言嵌入来对推特上的机器人和人类账户进行分类。实验结果表明,所提出的模型在不需要特征工程的情况下,性能优于或可与最先进的Twitter机器人检测模型相比较,使其在真实网络中更快、更容易地进行训练和部署。我们还提供了实验结果,显示了不同类型的语言嵌入和递归网络变体在Twitter机器人检测任务中的性能和计算成本。研究结果可能有助于研究人员为类似任务设计高性能的深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Cross-Language Multimodal Emotion Recognition With Dual Attention Transformers Video-Based Deception Detection via Capsule Network With Channel-Wise Attention and Supervised Contrastive Learning An Auditable, Privacy-Preserving, Transparent Unspent Transaction Output Model for Blockchain-Based Central Bank Digital Currency An Innovative Dense ResU-Net Architecture With T-Max-Avg Pooling for Advanced Crack Detection in Concrete Structures Polarity Classification of Low Resource Roman Urdu and Movie Reviews Sentiments Using Machine Learning-Based Ensemble Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1