Blockchain-Aided Secure Semantic Communication for AI-Generated Content in Metaverse

Yijing Lin;Hongyang Du;Dusit Niyato;Jiangtian Nie;Jiayi Zhang;Yanyu Cheng;Zhaohui Yang
{"title":"Blockchain-Aided Secure Semantic Communication for AI-Generated Content in Metaverse","authors":"Yijing Lin;Hongyang Du;Dusit Niyato;Jiangtian Nie;Jiayi Zhang;Yanyu Cheng;Zhaohui Yang","doi":"10.1109/OJCS.2023.3260732","DOIUrl":null,"url":null,"abstract":"The construction of virtual transportation networks requires massive data to be transmitted from edge devices to Virtual Service Providers (VSP) to facilitate circulations between the physical and virtual domains in Metaverse. Leveraging semantic communication for reducing information redundancy, VSPs can receive semantic data from edge devices to provide varied services through advanced techniques, e.g., AI-Generated Content (AIGC), for users to explore digital worlds. But the use of semantic communication raises a security issue because attackers could send malicious semantic data with similar semantic information but different desired content to break Metaverse services and cause wrong output of AIGC. Therefore, in this paper, we first propose a blockchain-aided semantic communication framework for AIGC services in virtual transportation networks to facilitate interactions of the physical and virtual domains among VSPs and edge devices. We illustrate a training-based targeted semantic attack scheme to generate adversarial semantic data by various loss functions. We also design a semantic defense scheme that uses the blockchain and zero-knowledge proofs to tell the difference between the semantic similarities of adversarial and authentic semantic data and to check the authenticity of semantic data transformations. Simulation results show that the proposed defense method can reduce the semantic similarity of the adversarial semantic data and the authentic ones by up to 30% compared with the attack scheme.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"4 ","pages":"72-83"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782664/10016900/10079087.pdf","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10079087/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The construction of virtual transportation networks requires massive data to be transmitted from edge devices to Virtual Service Providers (VSP) to facilitate circulations between the physical and virtual domains in Metaverse. Leveraging semantic communication for reducing information redundancy, VSPs can receive semantic data from edge devices to provide varied services through advanced techniques, e.g., AI-Generated Content (AIGC), for users to explore digital worlds. But the use of semantic communication raises a security issue because attackers could send malicious semantic data with similar semantic information but different desired content to break Metaverse services and cause wrong output of AIGC. Therefore, in this paper, we first propose a blockchain-aided semantic communication framework for AIGC services in virtual transportation networks to facilitate interactions of the physical and virtual domains among VSPs and edge devices. We illustrate a training-based targeted semantic attack scheme to generate adversarial semantic data by various loss functions. We also design a semantic defense scheme that uses the blockchain and zero-knowledge proofs to tell the difference between the semantic similarities of adversarial and authentic semantic data and to check the authenticity of semantic data transformations. Simulation results show that the proposed defense method can reduce the semantic similarity of the adversarial semantic data and the authentic ones by up to 30% compared with the attack scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metaverse中人工智能生成内容的区块链辅助安全语义通信
虚拟交通网络的构建需要从边缘设备向虚拟服务提供商(VSP)传输大量数据,以促进Metaverse中物理域和虚拟域之间的流通。利用语义通信来减少信息冗余,VSP可以从边缘设备接收语义数据,通过高级技术(例如AI生成内容(AIGC))为用户提供各种服务,以探索数字世界。但语义通信的使用引发了一个安全问题,因为攻击者可以发送具有相似语义信息但所需内容不同的恶意语义数据,以破坏Metaverse服务并导致AIGC的错误输出。因此,在本文中,我们首先为虚拟交通网络中的AIGC服务提出了一个区块链辅助语义通信框架,以促进VSP和边缘设备之间物理域和虚拟域的交互。我们展示了一种基于训练的目标语义攻击方案,通过各种损失函数生成对抗性语义数据。我们还设计了一个语义防御方案,该方案使用区块链和零知识证明来区分对抗性和真实性语义数据的语义相似性,并检查语义数据转换的真实性。仿真结果表明,与攻击方案相比,该防御方法可以将对抗性语义数据与真实语义数据的语义相似度降低30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
2024 List of Reviewers* New Incoming EIC Editorial Statistical Validity of Neural-Net Benchmarks Energy Efficiency of Kernel and User Space Level VPN Solutions in AIoT Networks Large Pretrained Foundation Model for Key Performance Indicator Multivariate Time Series Anomaly Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1