{"title":"Three Dimensional Metal-Surface Processing Parameter Generation Through Machine Learning-Based Nonlinear Mapping","authors":"Min Zhu;Yanjun Dong;Bingqing Shen;Haiyan Yu;Lihong Jiang;Hongming Cai","doi":"10.26599/TST.2022.9010026","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"28 4","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10011153/10011159.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10011159/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
基于机器学习的非线性映射生成三维金属表面加工参数
三维(3D)表面成形的精度和效率直接影响生产的周期和质量,在制造业中很重要。在实践中,考虑到金属板回弹的不确定性,实际板和目标表面之间存在误差,这产生了从计算机辅助设计模型到弯曲表面的非线性映射。技术人员需要重新配置参数,对一个表面进行多次加工,才能精细地控制回弹,这大大浪费了人力和物力。本研究旨在解决回弹控制问题,以提高板料成形的效率和精度。基于DeepFit模型,提出了一种计算三维曲面弯曲回弹值的基本方法。为了解决样本数据短缺问题,我们提出了一种将深度学习模型与基于案例推理(CBR)相结合的高级方法。接下来,设计了一个多模型融合的弯曲参数生成框架,通过表面数据预处理、基于CBR的模型匹配、基于卷积神经网络的加工表面生成以及通过一系列模型转换生成弯曲参数,来实现先进的回弹计算方法。此外,以鞍面加工为例,验证了所提出的方法和框架。总之,本研究为提高表面处理的精度和效率提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。