Feature-Grounded Single-Stage Text-to-Image Generation

IF 5.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Tsinghua Science and Technology Pub Date : 2023-09-22 DOI:10.26599/TST.2023.9010023
Yuan Zhou;Peng Wang;Lei Xiang;Haofeng Zhang
{"title":"Feature-Grounded Single-Stage Text-to-Image Generation","authors":"Yuan Zhou;Peng Wang;Lei Xiang;Haofeng Zhang","doi":"10.26599/TST.2023.9010023","DOIUrl":null,"url":null,"abstract":"Recently, Generative Adversarial Networks (GANs) have become the mainstream text-to-image (T2I) framework. However, a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approaches the ground-truth image distribution. Moreover, the multistage generation strategy results in complex T2I applications. Therefore, this study proposes a novel feature-grounded single-stage T2I model, which considers the “real” distribution learned from training images as one input and introduces a worst-case-optimized similarity measure into the loss function to enhance the model's generation capacity. Experimental results on two benchmark datasets demonstrate the competitive performance of the proposed model in terms of the Frechet inception distance and inception score compared to those of some classical and state-of-the-art models, showing the improved similarities among the generated image, text, and ground truth.","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"29 2","pages":"469-480"},"PeriodicalIF":5.2000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10258149/10258251.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10258251/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Generative Adversarial Networks (GANs) have become the mainstream text-to-image (T2I) framework. However, a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approaches the ground-truth image distribution. Moreover, the multistage generation strategy results in complex T2I applications. Therefore, this study proposes a novel feature-grounded single-stage T2I model, which considers the “real” distribution learned from training images as one input and introduces a worst-case-optimized similarity measure into the loss function to enhance the model's generation capacity. Experimental results on two benchmark datasets demonstrate the competitive performance of the proposed model in terms of the Frechet inception distance and inception score compared to those of some classical and state-of-the-art models, showing the improved similarities among the generated image, text, and ground truth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征的单阶段文本到图像生成
近年来,生成对抗性网络(GANs)已成为主流的文本到图像(T2I)框架。然而,输入的标准正态分布噪声不能提供足够的信息来合成接近真实图像分布的图像。此外,多级生成策略导致复杂的T2I应用。因此,本研究提出了一种新的基于特征的单阶段T2I模型,该模型将从训练图像中学习到的“真实”分布作为一个输入,并在损失函数中引入最坏情况下优化的相似性度量,以提高模型的生成能力。在两个基准数据集上的实验结果表明,与一些经典和最先进的模型相比,所提出的模型在Frechet起始距离和起始得分方面具有竞争力,显示了生成的图像、文本和基本事实之间的相似性得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
0.00%
发文量
2340
期刊最新文献
Contents Feature-Grounded Single-Stage Text-to-Image Generation Deep Broad Learning for Emotion Classification in Textual Conversations Exploring a Promising Region and Enhancing Decision Space Diversity for Multimodal Multi-Objective Optimization Exploring a Promising Region and Enhancing Decision Space Diversity for Multimodal Multi-objective Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1