{"title":"Node Search Contributions Based Long-Term Follow-Up Specific Individual Searching Model","authors":"Yayong Shi;Fei Chang;Yetao Sun;Guangcheng Yang;Rui Wang;Yuan Yao","doi":"10.26599/TST.2022.9010021","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"28 4","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10011153/10011158.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10011158/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
基于节点搜索贡献的长期跟踪特定个体搜索模型
在本文中,我们引入了一个长期跟踪的特定个体搜索(SIS)模型。该模型通过考虑网络结构的特点,引入了节点搜索贡献的概念。节点搜索贡献指示某个节点正确引导搜索路径并成功完成SIS的能力。节点搜索贡献的影响因素有三个组成部分:个体影响指数、属性相似性和节点搜索意愿。在节点搜索贡献和PeopleRank思想的基础上,本文提出了一个基于节点搜索贡献值的SIS模型,并从搜索失败率、最小搜索跳数和搜索大小三个方面与几种主流SIS算法进行了比较实验。实验结果验证了本文提出的模型的先进性和可操作性,对SIS过程的定量研究具有理论和实践意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。