Integration of Novel High-Frequency Transformer With Silicon-Carbide Schottky Diodes

IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Magnetics Letters Pub Date : 2022-12-14 DOI:10.1109/LMAG.2022.3229230
Weichong Yao;Junwei Lu;Andrew Seagar;Feifei Bai;Foad Taghizadeh
{"title":"Integration of Novel High-Frequency Transformer With Silicon-Carbide Schottky Diodes","authors":"Weichong Yao;Junwei Lu;Andrew Seagar;Feifei Bai;Foad Taghizadeh","doi":"10.1109/LMAG.2022.3229230","DOIUrl":null,"url":null,"abstract":"This letter presents a novel and compact structure that integrates silicon-carbide (SiC) Schottky diodes within a high-frequency transformer (HFT). The proposed structure would reduce the volume of a power converter and, in turn, the system to which it is applied. It would also greatly reduce the leakage inductances of an HFT as well as the inductive electromagnetic interference to surrounding components and devices. A prototype HFT shaped much like a torus is designed for integration with SiC Schottky diodes. The three-dimensional finite-element method simulation technique is used to design and analyze the magnetic structure of the HFT including the space reserved for the SiC Schottky diodes. Experimental results are presented for both the HFT as a separate component and as a system integrated with SiC Schottky diodes.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"13 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/9984833/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents a novel and compact structure that integrates silicon-carbide (SiC) Schottky diodes within a high-frequency transformer (HFT). The proposed structure would reduce the volume of a power converter and, in turn, the system to which it is applied. It would also greatly reduce the leakage inductances of an HFT as well as the inductive electromagnetic interference to surrounding components and devices. A prototype HFT shaped much like a torus is designed for integration with SiC Schottky diodes. The three-dimensional finite-element method simulation technique is used to design and analyze the magnetic structure of the HFT including the space reserved for the SiC Schottky diodes. Experimental results are presented for both the HFT as a separate component and as a system integrated with SiC Schottky diodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型高频变压器与碳化硅肖特基二极管的集成
这封信提出了一种新颖紧凑的结构,将碳化硅(SiC)肖特基二极管集成在高频变压器(HFT)中。所提出的结构将减少功率转换器的体积,进而减少其所应用的系统的体积。它还将大大降低HFT的泄漏电感以及对周围组件和设备的感应电磁干扰。设计了一个形状非常像环面的HFT原型,用于与SiC肖特基二极管集成。采用三维有限元模拟技术,设计和分析了HFT的磁结构,包括为SiC肖特基二极管预留的空间。给出了HFT作为单独部件和与SiC肖特基二极管集成的系统的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Magnetics Letters
IEEE Magnetics Letters PHYSICS, APPLIED-
CiteScore
2.40
自引率
0.00%
发文量
37
期刊介绍: IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest. IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.
期刊最新文献
Enhancement of Magnon–Photon Coupling Strength: Effect of Spatial Distribution Controllable Damping Boring Tool Based on Magnetorheological Elastomer A New Differential Magnetic Probe With Out-of-Phase Balun and Differential Loops Exchange-Biased Multiring Planar Hall Magnetoresistive Sensors With Nanotesla Resolution in Nonshielded Environments Spintronic Neuron Using a Magnetic Tunnel Junction for Low-Power Neuromorphic Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1