The ‘GROW Social Network’ datasets

S. Gesell, Evan C Sommer, S. Barkin
{"title":"The ‘GROW Social Network’ datasets","authors":"S. Gesell, Evan C Sommer, S. Barkin","doi":"10.21307/connections-2019.017","DOIUrl":null,"url":null,"abstract":"Abstract The GROW Social Network datasets were compiled as part of a 3-year community-based family-based pediatric obesity prevention intervention (N = 610). The datasets include (i) multiplex edges between adult study participants at four timepoints (baseline, 3, 12, and 36 mon), and (ii) multiplex edges within small intervention-only subgroups (30 groups of approximately 10 adult intervention participants) and a previously validated self-report measure of perceived cohesion at three timepoints (3, 6, and 12 wk). Actor attributes are richly characterized in a linkable dataset.","PeriodicalId":88856,"journal":{"name":"Connections (Toronto, Ont.)","volume":"40 1","pages":"123 - 128"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connections (Toronto, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/connections-2019.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The GROW Social Network datasets were compiled as part of a 3-year community-based family-based pediatric obesity prevention intervention (N = 610). The datasets include (i) multiplex edges between adult study participants at four timepoints (baseline, 3, 12, and 36 mon), and (ii) multiplex edges within small intervention-only subgroups (30 groups of approximately 10 adult intervention participants) and a previously validated self-report measure of perceived cohesion at three timepoints (3, 6, and 12 wk). Actor attributes are richly characterized in a linkable dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“GROW Social Network”数据集
GROW社交网络数据集是一项为期3年的以社区为基础的儿童肥胖预防干预(N = 610)的一部分。数据集包括(i)四个时间点(基线、3、12和36个月)成人研究参与者之间的多重边缘,以及(ii)仅进行干预的小亚组(30组约10名成人干预参与者)内的多重边缘,以及先前验证的三个时间点(3、6和12周)感知凝聚力的自我报告测量。参与者属性在可链接的数据集中被丰富地表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satisfaction with Retirement: A Qualitative Comparative Analysis with Social Network Analysis On the Effect of Reciprocal Dyadic Relations on the Share of Lexical Practices Men Think they Know More about Networks ScriptNet: An integrated criminological-network analysis tool Isolation, cohesion and contingent network effects: the case of school attachment and engagement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1