{"title":"Si3N4-SiO2-Based Silicon Photonics Nano-Biosensor for Molecular Communication","authors":"Shelma Cheeran Sajan;Anamika Singh;Prabhat Kumar Sharma;Santosh Kumar","doi":"10.1109/TMBMC.2023.3308695","DOIUrl":null,"url":null,"abstract":"In molecular communication (MC), information is conveyed between nano-scale transmitters and receivers using molecules. The environment sensing is a significant component of any MC system. The design of biological sensors thus is an important aspect for implementing MC systems. This paper presents a novel \n<inline-formula> <tex-math>$\\textit {Si}_{{3}}{N}_{{4}}$ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>$\\textit {SiO}_{{2}}$ </tex-math></inline-formula>\n silicon photonics (SiPh) nano-biosensor for detection of cancer cells. This design utilizes a micro-ring resonator (MRR) structure and takes advantage of the distinct optical characteristics of various cancer cells and MC by leveraging the interaction between cancer cells and CD47 proteins. The proposed sensor design can be used in artificial nano-machines deployed in a MC system for the applications like cancer cell detection and targeted drug delivery.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10236001/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In molecular communication (MC), information is conveyed between nano-scale transmitters and receivers using molecules. The environment sensing is a significant component of any MC system. The design of biological sensors thus is an important aspect for implementing MC systems. This paper presents a novel
$\textit {Si}_{{3}}{N}_{{4}}$
-
$\textit {SiO}_{{2}}$
silicon photonics (SiPh) nano-biosensor for detection of cancer cells. This design utilizes a micro-ring resonator (MRR) structure and takes advantage of the distinct optical characteristics of various cancer cells and MC by leveraging the interaction between cancer cells and CD47 proteins. The proposed sensor design can be used in artificial nano-machines deployed in a MC system for the applications like cancer cell detection and targeted drug delivery.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.