The Application of Artificial Intelligence in Alzheimer's Research

IF 5.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Tsinghua Science and Technology Pub Date : 2023-08-21 DOI:10.26599/TST.2023.9010037
Qing Zhao;Hanrui Xu;Jianqiang Li;Faheem Akhtar Rajput;Liyan Qiao
{"title":"The Application of Artificial Intelligence in Alzheimer's Research","authors":"Qing Zhao;Hanrui Xu;Jianqiang Li;Faheem Akhtar Rajput;Liyan Qiao","doi":"10.26599/TST.2023.9010037","DOIUrl":null,"url":null,"abstract":"Alzheimer's disease (AD) is an irreversible and neurodegenerative disease that slowly impairs memory and neurocognitive function, but the etiology of AD is still unclear. With the explosive growth of electronic health data, the application of artificial intelligence (Al) in the healthcare setting provides excellent potential for exploring etiology and personalized treatment approaches, and improving the disease's diagnostic and prognostic outcome. This paper first briefly introduces Al technologies and applications in medicine, and then presents a comprehensive review of Al in AD. In simple, it includes etiology discovery based on genetic data, computer-aided diagnosis (CAD), computer-aided prognosis (CAP) of AD using multi-modality data (genetic, neuroimaging and linguistic data), and pharmacological or non-pharmacological approaches for treating AD. Later, some popular publicly available AD datasets are introduced, which are important for advancing Al technologies in AD analysis. Finally, core research challenges and future research directions are discussed.","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"29 1","pages":"13-33"},"PeriodicalIF":5.2000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10225032/10225294.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10225294/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is an irreversible and neurodegenerative disease that slowly impairs memory and neurocognitive function, but the etiology of AD is still unclear. With the explosive growth of electronic health data, the application of artificial intelligence (Al) in the healthcare setting provides excellent potential for exploring etiology and personalized treatment approaches, and improving the disease's diagnostic and prognostic outcome. This paper first briefly introduces Al technologies and applications in medicine, and then presents a comprehensive review of Al in AD. In simple, it includes etiology discovery based on genetic data, computer-aided diagnosis (CAD), computer-aided prognosis (CAP) of AD using multi-modality data (genetic, neuroimaging and linguistic data), and pharmacological or non-pharmacological approaches for treating AD. Later, some popular publicly available AD datasets are introduced, which are important for advancing Al technologies in AD analysis. Finally, core research challenges and future research directions are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在阿尔茨海默病研究中的应用
阿尔茨海默病(AD)是一种不可逆的神经退行性疾病,会慢慢损害记忆和神经认知功能,但AD的病因尚不清楚。随着电子健康数据的爆炸性增长,人工智能(Al)在医疗环境中的应用为探索病因和个性化治疗方法以及提高疾病的诊断和预后提供了极好的潜力。本文首先简要介绍了人工智能技术及其在医学上的应用,然后对人工智能在AD中的应用进行了全面的综述。简单地说,它包括基于遗传数据的病因发现、计算机辅助诊断(CAD)、使用多模态数据(遗传、神经影像和语言数据)的AD计算机辅助预后(CAP),以及治疗AD的药理学或非药理学方法。随后,介绍了一些流行的公开可用的AD数据集,这些数据集对推进AD分析中的Al技术很重要。最后,讨论了核心研究的挑战和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
0.00%
发文量
2340
期刊最新文献
Contents Feature-Grounded Single-Stage Text-to-Image Generation Deep Broad Learning for Emotion Classification in Textual Conversations Exploring a Promising Region and Enhancing Decision Space Diversity for Multimodal Multi-Objective Optimization Exploring a Promising Region and Enhancing Decision Space Diversity for Multimodal Multi-objective Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1