{"title":"From Coarse to Fine: Two-Stage Indoor Localization with Multisensor Fusion","authors":"Li Zhang;Jinhui Bao;Yi Xu;Qiuyu Wang;Jingao Xu;Danyang Li","doi":"10.26599/TST.2022.9010029","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"28 3","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/9983974/09983975.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9983975/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
从粗到细:基于多传感器融合的两阶段室内定位
在密集的城市和室内环境中,高精度的室内定位越来越受到关注。先前的研究表明,基于WiFi指纹、监控摄像头或行人死亡统计(PDR)的单一室内定位方法受到精度低、跟踪区域有限、累积误差等限制,一些缺陷可以通过更多的人工成本或特殊场景来解决。然而,请求更多的附加信息和额外的用户约束是昂贵的,而且很少适用。本文提出了一种两阶段室内定位系统,该系统集成了WiFi指纹、监控摄像头的视觉和PDR(系统缩写为iWVP)。使用WiFi指纹进行粗略定位,然后通过融合来自监控摄像头和IMU传感器的数据获得准确定位。iWVP使用基于运动序列的匹配算法来确认行人的身份,提高了输出精度,避免了每个子系统的相应缺点。实验结果表明,iWVP具有较高的精度,平均位置误差为4.61cm,可以在复杂动态的室内环境中有效跟踪多个区域的行人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。