{"title":"RFCNet: Remote Sensing Image Super-Resolution Using Residual Feature Calibration Network","authors":"Yuan Xue;Liangliang Li;Zheyuan Wang;Chenchen Jiang;Minqin Liu;Jiawen Wang;Kaipeng Sun;Hongbing Ma","doi":"10.26599/TST.2022.9010018","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"28 3","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/9983974/09983980.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9983980/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
RFCNet:基于残差特征校正网络的遥感图像超分辨率
在单遥感图像超分辨率(SR)领域,深度卷积神经网络(CNNs)取得了优异的性能。为了进一步提高卷积模块在处理遥感图像时的性能,我们构造了一个高效的残差特征校准块来生成表达特征。在获取残差特征后,我们首先沿着通道维度将其分为两部分。一部分流到自校准卷积(SCC)进行进一步细化,另一部分通过所提出的双通道注意力(TPCA)机制进行重新缩放。SCC根据局部特征在深感受野下的表达来校正局部特征,以便在不增加计算次数的情况下对特征进行细化。所提出的TPCA使用特征图的均值和方差来获得准确的通道注意力向量。此外,引入了一种区域级的非局部操作,通过探索区域级的像素相关性来捕获长距离空间上下文信息。大量实验表明,所提出的残差特征校准网络在定量度量和视觉质量方面优于其他SR方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。