{"title":"An Improved Robust Sparse Convex Clustering","authors":"Jinyao Ma;Haibin Zhang;Shanshan Yang;Jiaojiao Jiang;Gaidi Li","doi":"10.26599/TST.2022.9010046","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"28 6","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10197185/10197194.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10197194/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
一种改进的鲁棒稀疏凸聚类
凸聚类将聚类问题转化为凸优化问题,引起了人们的广泛关注。它克服了传统聚类方法如K-means、基于密度的带噪声应用空间聚类(DBSCAN)和层次聚类等容易陷入局部最优解的缺点。然而,凸聚类很容易出现异常特征,因为它使用Frobenius范数来测量数据点与其相应聚类中心之间的距离并评估聚类。为了准确识别异常值特征,本文将数据分解为聚类结构组件和捕获异常值特征的归一化组件。与现有的用精确测量来评估特征的凸聚类不同,该模型可以克服不同特征大小的巨大差异,并且可以有效地识别和去除异常特征。为了求解所提出的模型,我们设计了一个有效的算法,并证明了该算法的全局收敛性。在合成数据集和UCI数据集上的实验表明,该方法在凸聚类方面优于比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。